Existence and multiplicity of positive solutions to nonlinear Schrödinger equations on a bridge type unbounded graph
HTML articles powered by AMS MathViewer
- by Junping Shi and Jiazheng Zhou;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17213
- Published electronically: June 27, 2025
- PDF | Request permission
Abstract:
The existence of positive standing wave solutions to a nonlinear Schrödinger equation on a bridge type unbounded metric graph (a domain of multiple half-lines with two junctions connected by a line segment with arbitrary length) is showed, and under certain conditions, the existence of multiple positive solutions is proved. Similar results also hold for the equation with bistable nonlinearity.References
- R. Adami, Ground states for NLS on graphs: a subtle interplay of metric and topology, Math. Model. Nat. Phenom. 11 (2016), no. 2, 20–35. MR 3491787, DOI 10.1051/mmnp/201611202
- Riccardo Adami, Claudio Cacciapuoti, Domenico Finco, and Diego Noja, Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), no. 6, 1289–1310. MR 3280068, DOI 10.1016/j.anihpc.2013.09.003
- Riccardo Adami, Claudio Cacciapuoti, Domenico Finco, and Diego Noja, Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations 257 (2014), no. 10, 3738–3777. MR 3260240, DOI 10.1016/j.jde.2014.07.008
- Riccardo Adami, Claudio Cacciapuoti, Domenico Finco, and Diego Noja, Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy, J. Differential Equations 260 (2016), no. 10, 7397–7415. MR 3473445, DOI 10.1016/j.jde.2016.01.029
- Riccardo Adami, Enrico Serra, and Paolo Tilli, NLS ground states on graphs, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 743–761. MR 3385179, DOI 10.1007/s00526-014-0804-z
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345. MR 695535, DOI 10.1007/BF00250555
- H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), no. 4, 347–375. MR 695536, DOI 10.1007/BF00250556
- H. Berestycki, P.-L. Lions, and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\textbf {R}^{N}$, Indiana Univ. Math. J. 30 (1981), no. 1, 141–157. MR 600039, DOI 10.1512/iumj.1981.30.30012
- Jaeyoung Byeon and Zhi-Qiang Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295–316. MR 1939214, DOI 10.1007/s00205-002-0225-6
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Manuel Del Pino and Patricio L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 2, 127–149 (English, with English and French summaries). MR 1614646, DOI 10.1016/S0294-1449(97)89296-7
- Yihong Du, Bendong Lou, Rui Peng, and Maolin Zhou, The Fisher-KPP equation over simple graphs: varied persistence states in river networks, J. Math. Biol. 80 (2020), no. 5, 1559–1616. MR 4071425, DOI 10.1007/s00285-020-01474-1
- Shin-Ichiro Ei, Ken Mitsuzono, and Haruki Shimatani, The dynamics of pulse solutions for reaction diffusion systems on a star shaped metric graph with the Kirchhoff’s boundary condition, Discrete Contin. Dyn. Syst. Ser. B 28 (2023), no. 12, 6064–6091. MR 4622858, DOI 10.3934/dcdsb.2022209
- Andreas Floer and Alan Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397–408. MR 867665, DOI 10.1016/0022-1236(86)90096-0
- Leonid Friedlander, Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 199–211 (English, with English and French summaries). MR 2141695, DOI 10.5802/aif.2095
- Changfeng Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations 21 (1996), no. 5-6, 787–820. MR 1391524, DOI 10.1080/03605309608821208
- Yuta Ishii, The effect of heterogeneity on one-peak stationary solutions to the Schnakenberg model, J. Differential Equations 285 (2021), 321–382. MR 4231513, DOI 10.1016/j.jde.2021.03.007
- Yuta Ishii and Kazuhiro Kurata, Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs, Commun. Pure Appl. Anal. 20 (2021), no. 4, 1633–1679. MR 4251810, DOI 10.3934/cpaa.2021035
- Satoru Iwasaki, Shuichi Jimbo, and Yoshihisa Morita, Standing waves of reaction-diffusion equations on an unbounded graph with two vertices, SIAM J. Appl. Math. 82 (2022), no. 5, 1733–1763. MR 4496711, DOI 10.1137/21M1454572
- Shuichi Jimbo and Yoshihisa Morita, Entire solutions to reaction-diffusion equations in multiple half-lines with a junction, J. Differential Equations 267 (2019), no. 2, 1247–1276. MR 3957986, DOI 10.1016/j.jde.2019.02.008
- Shuichi Jimbo and Yoshihisa Morita, Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph, Discrete Contin. Dyn. Syst. 41 (2021), no. 9, 4013–4039. MR 4256453, DOI 10.3934/dcds.2021026
- Shuichi Jimbo and Yoshihisa Morita, Front propagation in the bistable reaction-diffusion equation on tree-like graphs, J. Differential Equations 384 (2024), 93–119. MR 4673608, DOI 10.1016/j.jde.2023.11.016
- Yu Jin, Rui Peng, and Junping Shi, Population dynamics in river networks, J. Nonlinear Sci. 29 (2019), no. 6, 2501–2545. MR 4030394, DOI 10.1007/s00332-019-09551-6
- Adilbek Kairzhan, Diego Noja, and Dmitry E. Pelinovsky, Standing waves on quantum graphs, J. Phys. A 55 (2022), no. 24, Paper No. 243001, 51. MR 4438617, DOI 10.1088/1751-8121/ac6c60
- Peter Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004), no. 1, S107–S128. Special section on quantum graphs. MR 2042548, DOI 10.1088/0959-7174/14/1/014
- Yuhua Li, Fuyi Li, and Junping Shi, Ground states of nonlinear Schrödinger equation on star metric graphs, J. Math. Anal. Appl. 459 (2018), no. 2, 661–685. MR 3732549, DOI 10.1016/j.jmaa.2017.10.069
- Bendong Lou and Yoshihisa Morita, Asymptotic behaviour for solutions to reaction-diffusion equations on a root-like metric graph, Nonlinearity 37 (2024), no. 7, Paper No. 075011, 19. MR 4752564, DOI 10.1088/1361-6544/ad48f4
- Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281. MR 1219814, DOI 10.1215/S0012-7094-93-07004-4
- Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), no. 1, 121–156. MR 1625731, DOI 10.1006/jdeq.1998.3414
- Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations 158 (1999), no. 1, 94–151. MR 1721723, DOI 10.1016/S0022-0396(99)80020-5
- Paul H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270–291. MR 1162728, DOI 10.1007/BF00946631
- Hewan Shemtaga, Wenxian Shen, and Selim Sukhtaiev, Well-posedness of Keller-Segel systems on compact metric graphs, J. Evol. Equ. 25 (2025), no. 1, Paper No. 7, 62. MR 4839753, DOI 10.1007/s00028-024-01033-x
- Z. Sobirov, D. Matrasulov, K. Sabirov, S. Sawada, and K. Nakamura, Integrable nonlinear Schrödinger equation on simple networks: connection formula at vertices, Phys. Rev. E (3) 81 (2010), no. 6, 066602, 10. MR 2736292, DOI 10.1103/PhysRevE.81.066602
- Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162. MR 454365
- Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Self-focusing and wave collapse. MR 1696311
- Xuefeng Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993), no. 2, 229–244. MR 1218300
- Eiji Yanagida, Stability of nonconstant steady states in reaction-diffusion systems on graphs, Japan J. Indust. Appl. Math. 18 (2001), no. 1, 25–42. MR 1822132, DOI 10.1007/BF03167353
Bibliographic Information
- Junping Shi
- Affiliation: Department of Mathematics, William & Mary, Williamsburg, Virginia 23187-8795
- MR Author ID: 616436
- ORCID: 0000-0003-2521-9378
- Email: jxshix@wm.edu
- Jiazheng Zhou
- Affiliation: Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília - DF - Brazil
- MR Author ID: 913620
- Email: zhou@mat.unb.br
- Received by editor(s): May 27, 2024
- Received by editor(s) in revised form: December 7, 2024, and January 6, 2025
- Published electronically: June 27, 2025
- Additional Notes: The first author was supported by US-NSF grant OCE-2207343, and the second author was supported by FAP-DF/Brazil Grant No. 00193-00002209/2023-56.
- Communicated by: Wenxian Shen
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 35R02, 35J10, 35Q55, 35K57
- DOI: https://doi.org/10.1090/proc/17213