Gagliardo–Nirenberg interpolation inequality for symmetric spaces on noncommutative torus
HTML articles powered by AMS MathViewer
- by Fedor Sukochev, Fulin Yang and Dmitriy Zanin;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17229
- Published electronically: April 30, 2025
- HTML | PDF | Request permission
Abstract:
Let $E(\mathbb {T}_{\theta }^{d}),F(\mathbb {T}_{\theta }^{d})$ be two symmetric operator spaces on noncommutative torus $\mathbb {T}_{\theta }^{d}$ corresponding to symmetric function spaces $E,F$ on $(0,1)$. We obtain the Gagliardo–Nirenberg interpolation inequality with respect to $\mathbb {T}_{\theta }^{d}$: if $G=E^{1-\frac {l}{k}}F^{\frac {l}{k}}$ with $0\leq l\leq k$ and if the Cesàro operator is bounded on $E$ and $F$, then \begin{multline*} \|\nabla ^lx\|_{G(\mathbb {T}_{\theta }^{d})} \leq 2^{3\cdot 2^{k-2}-2}(k+1)^d\|C\|_{E\to E}^{1-\frac {l}{k}}\|C\|_{F\to F}^{\frac {l}{k}}\|x\|_{E(\mathbb {T}_{\theta }^{d})}^{1-\frac {l}{k}}\|\nabla ^kx\|_{F(\mathbb {T}_{\theta }^{d})}^{\frac {l}{k}},\;\\ x\in W^{k,1}(\mathbb {T}_{\theta }^{d}), \end{multline*} where $W^{k,1}(\mathbb {T}_{\theta }^{d})$ is the Sobolev space on $\mathbb {T}_{\theta }^{d}$ of order $k\in \mathbb {N}$. Our method is different from the previous settings, which is of interest in its own right.References
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Lucio Boccardo, Andrea Dall’Aglio, Thierry Gallouët, and Luigi Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal. 147 (1997), no. 1, 237–258. MR 1453181, DOI 10.1006/jfan.1996.3040
- Zeqian Chen, Quanhua Xu, and Zhi Yin, Harmonic analysis on quantum tori, Comm. Math. Phys. 322 (2013), no. 3, 755–805. MR 3079331, DOI 10.1007/s00220-013-1745-7
- Manuel Del Pino and Jean Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9) 81 (2002), no. 9, 847–875 (English, with English and French summaries). MR 1940370, DOI 10.1016/S0021-7824(02)01266-7
- Peter G. Dodds, Ben de Pagter, and Fedor A. Sukochev, Noncommutative integration and operator theory, Progress in Mathematics, vol. 349, Birkhäuser/Springer, Cham, [2023] ©2023. MR 4738490, DOI 10.1007/978-3-031-49654-7
- Emilio Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137 (Italian). MR 102740
- Loukas Grafakos, Danqing He, and Lenka Slavíková, $L^2\times L^2\to L^1$ boundedness criteria, Math. Ann. 376 (2020), no. 1-2, 431–455. MR 4055166, DOI 10.1007/s00208-018-1794-5
- Hyunsu Ha, Gihyun Lee, and Raphaël Ponge, Pseudodifferential calculus on noncommutative tori, I. Oscillating integrals, Internat. J. Math. 30 (2019), no. 8, 1950033, 74. MR 3985230, DOI 10.1142/S0129167X19500332
- Hyunsu Ha, Gihyun Lee, and Raphaël Ponge, Pseudodifferential calculus on noncommutative tori, II. Main properties, Internat. J. Math. 30 (2019), no. 8, 1950034, 73. MR 3985231, DOI 10.1142/S0129167X19500344
- Agnieszka Kałamajska, Pointwise multiplicative inequalities and Nirenberg type estimates in weighted Sobolev spaces, Studia Math. 108 (1994), no. 3, 275–290. MR 1259280, DOI 10.4064/sm-108-3-275-290
- A. Kolmogoroff, On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Translation 1949 (1949), no. 4, 19. MR 31009
- N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81–121. MR 2431251, DOI 10.1515/CRELLE.2008.059
- Edmund von Landau, Einige Ungleichungen Fur Zweimal Differentiierbare Funktionen, Proc. London Math. Soc. (2) 13 (1914), 43–49. MR 1577513, DOI 10.1112/plms/s2-13.1.43
- K. Leśnik, T. Roskovec and F. Soudský, Optimal Gagliardo-Nirenberg interpolation inequality for rearrangment spaces, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2023), no. 4, 161.
- Steven Lord, Fedor Sukochev, and Dmitriy Zanin, Singular traces, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, 2013. Theory and applications. MR 3099777
- Steven Lord, Edward McDonald, Fedor Sukochev, and Dmitriy Zanin, Singular traces. Vol. 2. Trace formulas, De Gruyter Studies in Mathematics, vol. 46/2, De Gruyter, Berlin, [2023] ©2023. Second edition [of 3099777]. MR 4604115
- Lech Maligranda, Orlicz spaces and interpolation, Seminários de Matemática [Seminars in Mathematics], vol. 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989. MR 2264389
- Anastasia Molchanova, Tomáš Roskovec, and Filip Soudský, Regularity of the inverse mapping in Banach function spaces, Math. Nachr. 294 (2021), no. 12, 2382–2395. MR 4371305, DOI 10.1002/mana.201900374
- Vladimir Maz′ya and Tatyana Shaposhnikova, On pointwise interpolation inequalities for derivatives, Math. Bohem. 124 (1999), no. 2-3, 131–148. MR 1780687
- Edward McDonald, Fedor Sukochev, and Xiao Xiong, Quantum differentiability on quantum tori, Comm. Math. Phys. 371 (2019), no. 3, 1231–1260. MR 4029831, DOI 10.1007/s00220-019-03384-w
- Edward McDonald, Fedor Sukochev, and Dmitriy Zanin, A $C^*$-algebraic approach to the principal symbol II, Math. Ann. 374 (2019), no. 1-2, 273–322. MR 3961311, DOI 10.1007/s00208-019-01822-7
- E. McDonald, F. Sukochev, and D. Zanin, A noncommutative Tauberian theorem and Weyl asymptotics in noncommutative geometry, Lett. Math. Phys. 112 (2022), no. 4, Paper No. 77, 45. MR 4468037, DOI 10.1007/s11005-022-01568-5
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115–162. MR 109940
- Luboš Pick, Alois Kufner, Oldřich John, and Svatopluk Fučík, Function spaces. Vol. 1, Second revised and extended edition, De Gruyter Series in Nonlinear Analysis and Applications, vol. 14, Walter de Gruyter & Co., Berlin, 2013. MR 3024912
- Patrick Penel and Milan Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math. 49 (2004), no. 5, 483–493. MR 2086090, DOI 10.1023/B:APOM.0000048124.64244.7e
- Ben de Pagter and Fyodor Sukochev, Commutator estimates and $\Bbb R$-flows in non-commutative operator spaces, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 2, 293–324. MR 2334949, DOI 10.1017/S0013091505000957
- Fedor Sukochev, Completeness of quasi-normed symmetric operator spaces, Indag. Math. (N.S.) 25 (2014), no. 2, 376–388. MR 3151823, DOI 10.1016/j.indag.2012.05.007
- L. Slavíková, On the failure of the Hörmander multiplier theorem in a limiting case, Rev. Mat. Iberoam. 12 (2019).
- E. M. Stein, Functions of exponential type, Ann. of Math. (2) 65 (1957), 582–592. MR 85342, DOI 10.2307/1970066
- Fedor Sukochev, Kanat Tulenov, and Dmitriy Zanin, Sobolev projection on quantum torus, its complete boundedness and applications, J. Math. Anal. Appl. 543 (2025), no. 2, Paper No. 128906, 21. MR 4803783, DOI 10.1016/j.jmaa.2024.128906
- Fedor Sukochev, Xiao Xiong, and Dmitriy Zanin, Asymptotics of singular values for quantised derivatives on noncommutative tori, J. Funct. Anal. 285 (2023), no. 5, Paper No. 110021, 42. MR 4595541, DOI 10.1016/j.jfa.2023.110021
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- Q. Xu, Noncommutative $L_{p}$-spaces and martingale inequalities, Book manuscript, 2007.
- Xiao Xiong, Quanhua Xu, and Zhi Yin, Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori, Mem. Amer. Math. Soc. 252 (2018), no. 1203, vi+118. MR 3778570, DOI 10.1090/memo/1203
Bibliographic Information
- Fedor Sukochev
- Affiliation: School of Mathematics and Statistics, UNSW, Kensington, NSW 2052, Australia
- MR Author ID: 229620
- Email: f.sukochev@unsw.edu.au
- Fulin Yang
- Affiliation: School of Mathematics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- MR Author ID: 1617404
- Email: fulinyoung@hit.edu.cn
- Dmitriy Zanin
- Affiliation: School of Mathematics and Statistics, UNSW, Kensington, NSW 2052, Australia
- MR Author ID: 752894
- Email: d.zanin@unsw.edu.au
- Received by editor(s): August 20, 2024
- Received by editor(s) in revised form: January 8, 2025, and January 12, 2025
- Published electronically: April 30, 2025
- Additional Notes: The first and third authors were supported by Australian Research Council (ARC) DP230100434. The second author was supported by National Natural Science Foundation of China No. 12371138.
- Communicated by: Stephen Dilworth
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 35A23, 46L52, 58B34, 46E30
- DOI: https://doi.org/10.1090/proc/17229