Non-linear Lie groups that can be realized as automorphism groups of bounded domains
HTML articles powered by AMS MathViewer
- by George Shabat and Alexander Tumanov;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17241
- Published electronically: April 17, 2025
- HTML | PDF | Request permission
Abstract:
We consider a problem whether a given Lie group can be realized as the group of all biholomorphic automorphisms of a bounded domain in $\mathbb {C}^n$. In an earlier paper of 1990, we proved the result for connected linear Lie groups. In this paper we give examples of non-linear groups for which the result still holds.References
- Eric Bedford and Jiri Dadok, Bounded domains with prescribed group of automorphisms, Comment. Math. Helv. 62 (1987), no. 4, 561–572. MR 920057, DOI 10.1007/BF02564462
- A. S. Householder, Recent Publications: Reviews: Actualites Scientifiques et Industrielles. No. 72, Les Espaces Metriques Fondes sur la Notion d’Aire. No. 79, Les Espaces de Finsler. No. 194, La Methode du Repere Mobile, la Theorie des Groupes Continus, et les, Amer. Math. Monthly 42 (1935), no. 9, 562–563. MR 1523495, DOI 10.2307/2301940
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- Su-Jen Kan, Complete hyperbolic Stein manifolds with prescribed automorphism groups, Comment. Math. Helv. 82 (2007), no. 2, 371–383. MR 2319933, DOI 10.4171/CMH/95
- V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Structure of Lie groups and Lie algebras, Lie Groups and Lie Algebras III, Encyclopaedia of Mathematical Sciences, vol. 41.
- Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de $\textbf {C}^{n}$ par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91–97 (French, with English summary). MR 558590, DOI 10.5802/aif.768
- Rita Saerens and William R. Zame, The isometry groups of manifolds and the automorphism groups of domains, Trans. Amer. Math. Soc. 301 (1987), no. 1, 413–429. MR 879582, DOI 10.1090/S0002-9947-1987-0879582-X
- A. E. Tumanov and G. B. Shabat, Realization of linear Lie groups by biholomorphic automorphisms of bounded domains, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 94–95 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 255–257 (1991). MR 1082048, DOI 10.1007/BF01077979
- Jörg Winkelmann, Realizing connected Lie groups as automorphism groups of complex manifolds, Comment. Math. Helv. 79 (2004), no. 2, 285–299. MR 2059433, DOI 10.1007/s00014-003-0794-5
- B. Wong, Characterization of the unit ball in $\textbf {C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 492401, DOI 10.1007/BF01403050
Bibliographic Information
- George Shabat
- Affiliation: Russian State University for the Humanities, Moscow, 125267, Russia
- Email: george.shabat@gmail.com
- Alexander Tumanov
- Affiliation: Department of Mathematics, University of Illinois, 1409 West Green St., Urbana, Illinois 61801
- MR Author ID: 189281
- ORCID: 0000-0002-7153-0485
- Email: tumanov@illinois.edu
- Received by editor(s): June 25, 2024
- Published electronically: April 17, 2025
- Communicated by: Filippo Bracci
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 32M18, 22F50
- DOI: https://doi.org/10.1090/proc/17241