$d$-plane transform: Unique and non-unique continuation
HTML articles powered by AMS MathViewer
- by Divyansh Agrawal and Nisha Singhal;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17262
- Published electronically: June 27, 2025
- PDF | Request permission
Abstract:
The $d$-plane transform maps functions to their integrals over $d$-planes in $\mathbb {R}^n$. We study the following question: if a function vanishes in a bounded open set, and its $d$-plane transform vanishes on all $d$-planes intersecting the same set, does the function vanish identically? For $d$ an even integer, we show by producing an explicit counterexample that neither the $d$-plane transform nor its normal operator has this property. On the other hand, an even stronger property holds when $d$ is odd, where the normal operator vanishing to infinite order at a point, along with the function vanishing on an open set containing that point, is sufficient to conclude that the function vanishes identically.References
- Divyansh Agrawal, Gaik Ambartsoumian, Venkateswaran P. Krishnan, and Nisha Singhal, A simple range characterization for spherical mean transform in odd dimensions and its applications, Preprint arXiv:2310.20702, 2023.
- Divyansh Agrawal, Venkateswaran P. Krishnan, and Suman Kumar Sahoo, Unique continuation results for certain generalized ray transforms of symmetric tensor fields, J. Geom. Anal. 32 (2022), no. 10, Paper No. 245, 27. MR 4456212, DOI 10.1007/s12220-022-00981-5
- Carlos A. Berenstein and Enrico Casadio Tarabusi, Inversion formulas for the $k$-dimensional Radon transform in real hyperbolic spaces, Duke Math. J. 62 (1991), no. 3, 613–631. MR 1104811, DOI 10.1215/S0012-7094-91-06227-7
- Carlos A. Berenstein and Enrico Casadio Tarabusi, Range of the $k$-dimensional Radon transform in real hyperbolic spaces, Forum Math. 5 (1993), no. 6, 603–616. MR 1242891, DOI 10.1515/form.1993.5.603
- Jan Boman, An example of nonuniqueness for a generalized Radon transform, J. Anal. Math. 61 (1993), 395–401. MR 1253450, DOI 10.1007/BF02788850
- Jan Boman, Local non-injectivity for weighted Radon transforms, Tomography and inverse transport theory, Contemp. Math., vol. 559, Amer. Math. Soc., Providence, RI, 2011, pp. 39–47. MR 2885194, DOI 10.1090/conm/559/11070
- Jan Boman and Eric Todd Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J. 55 (1987), no. 4, 943–948. MR 916130, DOI 10.1215/S0012-7094-87-05547-5
- Giovanni Covi, Keijo Mönkkönen, and Jesse Railo, Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems, Inverse Probl. Imaging 15 (2021), no. 4, 641–681. MR 4259671, DOI 10.3934/ipi.2021009
- Alexis Drouot, Quantitative form of certain $k$-plane transform inequalities, J. Funct. Anal. 268 (2015), no. 5, 1241–1276. MR 3304599, DOI 10.1016/j.jfa.2014.11.014
- Ricardo Estrada and Boris Rubin, Radon-John transforms and spherical harmonics, Representation theory and harmonic analysis on symmetric spaces, Contemp. Math., vol. 714, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 131–142. MR 3847247, DOI 10.1090/conm/714/14329
- Paul Goodey and Wolfgang Weil, Centrally symmetric convex bodies and the spherical Radon transform, J. Differential Geom. 35 (1992), no. 3, 675–688. MR 1163454
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- Joonas Ilmavirta, Pu-Zhao Kow, and Suman Kumar Sahoo, Unique continuation for the momentum ray transform, J. Fourier Anal. Appl. 31 (2025), no. 2, Paper No. 17, 30. MR 4875757, DOI 10.1007/s00041-025-10149-8
- Joonas Ilmavirta and Keijo Mönkkönen, Unique continuation of the normal operator of the x-ray transform and applications in geophysics, Inverse Problems 36 (2020), no. 4, 045014, 23. MR 4103726, DOI 10.1088/1361-6420/ab6e75
- Joonas Ilmavirta and Keijo Mönkkönen, X-ray tomography of one-forms with partial data, SIAM J. Math. Anal. 53 (2021), no. 3, 3002–3015. MR 4261111, DOI 10.1137/20M1344779
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 199449
- F. Natterer, The mathematics of computerized tomography, Classics in Applied Mathematics, vol. 32, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Reprint of the 1986 original. MR 1847845, DOI 10.1137/1.9780898719284
- Fedor Nazarov, Dmitry Ryabogin, and Artem Zvavitch, On the local equatorial characterization of zonoids and intersection bodies, Adv. Math. 217 (2008), no. 3, 1368–1380. MR 2383902, DOI 10.1016/j.aim.2007.08.013
- G. Yu. Panina, Representation of an $n$-dimensional body in the form of a sum of $(n-1)$-dimensional bodies, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 23 (1988), no. 4, 385–395, 409 (Russian, with English and Armenian summaries); English transl., Soviet J. Contemporary Math. Anal. 23 (1988), no. 4, 91–103. MR 997401
- B. Rubin, Inversion of $k$-plane transforms via continuous wavelet transforms, J. Math. Anal. Appl. 220 (1998), no. 1, 187–203. MR 1613940, DOI 10.1006/jmaa.1997.5852
- B. Rubin, Weighted norm inequalities for $k$-plane transforms, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3455–3467. MR 3238421, DOI 10.1090/S0002-9939-2014-11987-3
- B. Rubin, Overdetermined transforms in integral geometry, Complex analysis and dynamical systems VI. Part 1, Contemp. Math., vol. 653, Amer. Math. Soc., Providence, RI, 2015, pp. 291–313. MR 3453082, DOI 10.1090/conm/653/13200
- B. Rubin, Norm estimates for $k$-plane transforms and geometric inequalities, Adv. Math. 349 (2019), 29–55. MR 3937741, DOI 10.1016/j.aim.2019.04.012
- Boris Rubin, Reconstruction of functions from their integrals over $k$-planes, Israel J. Math. 141 (2004), 93–117. MR 2063027, DOI 10.1007/BF02772213
- Boris Rubin, On some inversion formulas for Riesz potentials and $k$-plane transforms, Fract. Calc. Appl. Anal. 15 (2012), no. 1, 34–43. MR 2872110, DOI 10.2478/s13540-012-0004-5
- Boris Rubin, On the injectivity of integral operators related to the Euler-Poisson-Darboux equation and shifted $k$-plane transforms, Anal. Math. Phys. 13 (2023), no. 4, Paper No. 56, 15. MR 4601149, DOI 10.1007/s13324-023-00819-5
- R. T. Seeley, Spherical harmonics, Amer. Math. Monthly 73 (1966), no. 4, 115–121. MR 201695, DOI 10.2307/2313760
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
- Lawrence Zalcman, Uniqueness and nonuniqueness for the Radon transform, Bull. London Math. Soc. 14 (1982), no. 3, 241–245. MR 656606, DOI 10.1112/blms/14.3.241
Bibliographic Information
- Divyansh Agrawal
- Affiliation: Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Bengaluru, India
- MR Author ID: 1517197
- Email: agrawald@tifrbng.res.in, agrdiv01@gmail.com
- Nisha Singhal
- Affiliation: Centre for Applicable Mathematics, Tata Institute of Fundamental Research, Bengaluru, India
- MR Author ID: 1646845
- ORCID: 0009-0006-3005-1986
- Email: nisha2020@tifrbng.res.in
- Received by editor(s): July 11, 2024
- Received by editor(s) in revised form: January 13, 2025, January 27, 2025, and February 6, 2025
- Published electronically: June 27, 2025
- Additional Notes: The first author is the corresponding author
- Communicated by: Tanya Christiansen
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 44A12; Secondary 45Q05, 44A35
- DOI: https://doi.org/10.1090/proc/17262