Uniqueness of $H$-harmonic Moebius invariant inner products on the ball
HTML articles powered by AMS MathViewer
- by Petr Blaschke and Miroslav Engliš;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17264
- Published electronically: June 26, 2025
- PDF | Request permission
Abstract:
We prove uniqueness of the Moebius invariant semi-inner product on hyperbolic-harmonic functions on the unit ball of the real n-space, i.e. on functions annihilated by the hyperbolic Laplacian on the ball.References
- Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, 2nd ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. MR 1805196, DOI 10.1007/978-1-4757-8137-3
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 58756
- Petr Blaschke, Miroslav Engliš, and El-Hassan Youssfi, A Moebius invariant space of $H$-harmonic functions on the ball, J. Funct. Anal. 288 (2025), no. 9, Paper No. 110857, 33. MR 4864879, DOI 10.1016/j.jfa.2025.110857
- Miroslav Engliš and El-Hassan Youssfi, $M$-harmonic reproducing kernels on the ball, J. Funct. Anal. 286 (2024), no. 1, Paper No. 110187, 54. MR 4654012, DOI 10.1016/j.jfa.2023.110187
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Walter Rudin, Function theory in the unit ball of $\Bbb C^n$, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1980 edition. MR 2446682
- Manfred Stoll, Harmonic and subharmonic function theory on the hyperbolic ball, London Mathematical Society Lecture Note Series, vol. 431, Cambridge University Press, Cambridge, 2016. MR 3495548, DOI 10.1017/CBO9781316341063
- Manfred Stoll, The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian, Math. Scand. 124 (2019), no. 1, 81–101. MR 3904750, DOI 10.7146/math.scand.a-109674
- A. Ersin Üreyen, $\mathcal {H}$-harmonic Bergman projection on the real hyperbolic ball, J. Math. Anal. Appl. 519 (2023), no. 2, Paper No. 126802, 30. MR 4504568, DOI 10.1016/j.jmaa.2022.126802
- Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155
Bibliographic Information
- Petr Blaschke
- Affiliation: Mathematics Institute, Silesian University in Opava, Na Rybníčku 1, 74601 Opava, Czech Republic
- MR Author ID: 950782
- ORCID: 0000-0001-5565-0877
- Email: Petr.Blaschke{@}math.slu.cz
- Miroslav Engliš
- Affiliation: Mathematics Institute, Silesian University in Opava, Na Rybníčku 1, 74601 Opava, Czech Republic; \normalfont and Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic
- ORCID: 0000-0001-6183-8323
- Email: englis{@}math.cas.cz
- Received by editor(s): August 18, 2024
- Received by editor(s) in revised form: February 8, 2025
- Published electronically: June 26, 2025
- Additional Notes: This research was supported by GAČR grant no. 25-18042S and RVO funding for IČO 67985840
- Communicated by: Javad Mashreghi
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 31C05; Secondary 33C55, 32A36
- DOI: https://doi.org/10.1090/proc/17264