On the absence of quantitatively critical measure equivalence couplings
HTML articles powered by AMS MathViewer
- by Corentin Correia;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17291
- Published electronically: June 30, 2025
- PDF | Request permission
Abstract:
Given a measure equivalence coupling between two finitely generated groups, Delabie, Koivisto, Le Maître and Tessera [Ann. H. Lebesgue 5 (2022), pp. 1417–1487] have found explicit upper bounds on how integrable the associated cocycles can be. These bounds are optimal in many cases but the integrability of the cocycles with respect to these critical thresholds remained unclear. For instance, a cocycle from $\mathbb {Z}^{k+\ell }$ to $\mathbb {Z}^{k}$ can be $\mathrm {L}^p$ for all $p<\frac {k}{k+\ell }$ but not for $p>\frac {k}{k+\ell }$, and the case $p=\frac {k}{k+\ell }$ was an open question which we answer by the negative. Our main result actually yields much more examples where the integrability threshold given by Delabie-Koivisto-Le Maître-Tessera Theorems cannot be reached.References
- Tim Austin, Integrable measure equivalence for groups of polynomial growth, Groups Geom. Dyn. 10 (2016), no. 1, 117–154. With Appendix B by Lewis Bowen. MR 3460333, DOI 10.4171/GGD/345
- Uri Bader, Alex Furman, and Roman Sauer, Integrable measure equivalence and rigidity of hyperbolic lattices, Invent. Math. 194 (2013), no. 2, 313–379. MR 3117525, DOI 10.1007/s00222-012-0445-9
- Jérémie Brieussel and Tianyi Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups, Ann. of Math. (2) 193 (2021), no. 1, 1–105. MR 4199729, DOI 10.4007/annals.2021.193.1.1
- Thierry Coulhon, Random walks and geometry on infinite graphs, Lecture notes on analysis in metric spaces (Trento, 1999) Appunti Corsi Tenuti Docenti Sc., Scuola Norm. Sup., Pisa, 2000, pp. 5–36. MR 2023121
- Thierry Coulhon and Laurent Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), no. 2, 293–314 (French). MR 1232845, DOI 10.4171/RMI/138
- Thiebout Delabie, Juhani Koivisto, François Le Maître, and Romain Tessera, Quantitative measure equivalence between amenable groups, Ann. H. Lebesgue 5 (2022), 1417–1487 (English, with English and French summaries). MR 4526258, DOI 10.5802/ahl.155
- Anna Erschler, On isoperimetric profiles of finitely generated groups, Geom. Dedicata 100 (2003), 157–171. MR 2011120, DOI 10.1023/A:1025849602376
- Amandine Escalier, Building prescribed quantitative orbit equivalence with the integers, Groups Geom. Dyn. 18 (2024), no. 3, 1007–1035. MR 4760269, DOI 10.4171/ggd/766
- Avinoam Mann. How Groups Grow. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9781139095129.
- Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, DOI 10.1090/S0273-0979-1980-14702-3
Bibliographic Information
- Corentin Correia
- Affiliation: Université Paris Cité, Institut de Mathématiques de Jussieu-Paris Rive Gauche, 75013 Paris, France
- MR Author ID: 1586201
- ORCID: 0000-0002-8978-3931
- Email: corentin.correia@imj-prg.fr
- Received by editor(s): January 17, 2025
- Received by editor(s) in revised form: March 5, 2025, and March 6, 2025
- Published electronically: June 30, 2025
- Communicated by: Katrin Gelfert
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 37A20; Secondary 20F65
- DOI: https://doi.org/10.1090/proc/17291