Universal monoid actions: The power of freedom
HTML articles powered by AMS MathViewer
- by Wiesław Kubiś;
- Proc. Amer. Math. Soc.
- DOI: https://doi.org/10.1090/proc/17309
- Published electronically: June 27, 2025
- PDF | Request permission
Abstract:
Motivated by the recent work of Balcerzak and Kania [Proc. Amer. Math. Soc. 151 (2023) pp. 3737–3742], we show that every countable monoid has a universal action on the free object over a countable infinite set. This is a general result concerning concrete categories with a left adjoint (free) functor. On the way, we introduce an abstract concept of “being generated by a set”. At the same time we obtain a simpler proof of the result of Darji and Matheron [Proc. Amer. Math. Soc. 145 (2017), pp, 251–265] concerning a surjectively universal operator on the classical Banach space $\ell _1$ of summable sequences.References
- Jiří Adámek, Horst Herrlich, and George E. Strecker, Abstract and concrete categories: the joy of cats, Repr. Theory Appl. Categ. 17 (2006), 1–507. Reprint of the 1990 original [Wiley, New York; MR1051419]. MR 2240597
- Marek Balcerzak and Tomasz Kania, The existence of UFO implies projectively universal morphisms, Proc. Amer. Math. Soc. 151 (2023), no. 9, 3737–3742. MR 4607619, DOI 10.1090/proc/16422
- Udayan B. Darji and Étienne Matheron, Some universality results for dynamical systems, Proc. Amer. Math. Soc. 145 (2017), no. 1, 251–265. MR 3565377, DOI 10.1090/proc/13225
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381, DOI 10.1007/978-1-4419-7515-7
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
Bibliographic Information
- Wiesław Kubiś
- Affiliation: Institute of Mathematics, Cardinal Stefan Wyszyński University in Warsaw, Poland; \normalfont and Institute of Mathematics, Czech Academy of Sciences, Czechia
- ORCID: 0000-0002-7241-2528
- Received by editor(s): March 29, 2024
- Published electronically: June 27, 2025
- Communicated by: Vera Fischer
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
- MSC (2020): Primary 18A20, 47B01, 08B20
- DOI: https://doi.org/10.1090/proc/17309