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1. Introduction. In my paper On quasi-primary ideals1 I have

added a fifth decomposition of an ideal to those given by E. Noether.2

Thus in a commutative ring with unit element in which the maximal

condition is satisfied there are in general five distinct decompositions

of an ideal; namely as shortest3 intersection of a finite set of (i) ir-

reducible, (ii) primary, (iii) quasi-primary, (iv) relatively-prime-inde-

composable, (v) direct-indecomposable ideals. The components in (iv)

and in (v) are unique, while in (i), (ii), (iii) the associated prime ideals,

but not necessarily the components themselves, are unique. In (i)

one prime ideal may belong to more than one component, but always

to the same number of components. Each prime ideal that occurs in

(i) occurs even in (ii) but with a single multiplicity, while in (iii) only

the minimal prime ideals of (ii) occur, each but once.

The comparison of the features of the prime ideals associated

with components of (ii) and of (iii) suggests that, perhaps, a new

type of decomposition may be defined, one whose components are

associated with just the maximal prime ideals of (ii). The sought type

of ideals will be realised by those which coincide with their single

"principal component" in the sense of W. Krull.4 These ideals will be

defined here more directly, again by making use of the familiar con-

cept of "relative primeness." However, it must be emphasized that

the method used here is different from Krull's method. Moreover it

seems quite questionable whether all principal components are primal.

2. Definition and preliminaries. We shall say that g is a primal

ideal if the elements which are not prime6 to it form an ideal p called

Received by the editors June IS, 1948 and, in revised form, August 15, 1948.
1 Acta Univ. Szeged, vol. 11 (1947) pp. 174-183. An ideal is quasi-primary if no

product of two elements belongs to it unless a power of one of them belongs to it, or,

otherwise, if its radical is prime.

1 E. Noether, Idealtheorie in Ringbereichen, Math. Ann. vol. 83 (1921) pp. 24-66.

3 The term "shortest" means that no component may simply be omitted and no

intersection of more than one component is again of the same type.

4 W. Knill, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Math. Ann. vol.

101 (1929) pp. 729-744. If p is a maximal prime divisor of a (that is, p is a maximal

ideal that contains no element prime to a), then the principal component a(p) is

denned to consist of all elements whose product by a properly chosen element not in

p belongs to a.

6 a is called (relatively) prime to b, if a&£b is impossible unless &€E 6; cf. Noether,

loc. cit. footnote 2, p. 45.
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the adjoint ideal of g. As be together with b is not prime to g whatever

the element c, what we require is that together with two elements their

difference shall be non-prime to g.

Evidently, g is a primal ideal and p is adjoint to g if and only if

a6£g and 2>£g imply a£p and, conversely, whenever a£p, there

always exists an element b not in g such that oo£g.

The elements non-prime to g represent in the residue class ring

9?/6 the zero factors, therefore the definition of primal ideals may

also be formulated as follows: in SR/g the zero factors form an ideal,

namely p/g.

The product of two elements prime to an ideal g is again prime to

it,6 since, assuming b and c prime to g, a&c£g implies a/3£g and this

implies a£g. Therefore no product of two elements not belonging to

p belongs to p, thus the adjoint ideal is prime. This fact shows the

analogy between the ideals adjoint to primal ideals and those asso-

ciated with quasi-primary ideals.

The primal ideals may be considered as an extension of the idea of

primary ideals. Indeed, the elements non-prime to a primary ideal

are just the elements of its prime radical. But there are in general

primal ideals which are not primary; moreover a primal ideal may be

quasi-primary and need not be primary. To illustrate this, let us

consider the ring of polynomials in x and y with rational numbers for

their coefficients. In this ring % = (x2, xy) is a quasi-primary ideal

with the radical (x) and is primal with (x, y) as adjoint prime ideal.

£ is not primary for xy£s and neither x nor any power of y belongs to

f. As another illustration we may refer to a valuation ring with a

non-archimedian value-group,7 where all ideals are both quasi-

primary [for if be £ a, then either o2£a or cs£a according as c divides

b or b divides c] and primal [for if 6iCi£a, i>2c2£a with ci£a, c2£a

and, for example, C\ divides c2, then c2(oi — b2) £o], but not necessarily

primary!

If, however, an ideal g is quasi-primary and primal, and at the same

time its prime radical and its adjoint prime ideal coincide, then g

is necessarily primary; for ö6£g, o£g imply that a belongs to the

adjoint ideal, that is, to the radical, therefore it follows that a certain

power of a belongs to g: g is indeed primary.8

One simple remark will be inserted here in order to make the con-

• With the terminology of Krull: the system of elements prime to 8 is multiplica-

tively closed.

' W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. vol. 167 (1932)

pp. 160-196.
* Cf. Krull's corollary to Satz 6, loa cit. footnote 4, p. 737.
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nection between primal ideals and principal components more ap-

parent. Namely, we shall show that the principal component ct(p) of

a belonging to the maximal prime ideal p is a multiple of the inter-

section a*(p) of all primal divisors of a whose adjoint prime ideal is

contained in p. Indeed, if g is such a primal ideal and aEu(p), then

by definition there is an element b not in p such that <z/3£a. Now

öo£g, and this implies a£g, for &£p must be prime to g; therefore

o(p) Cg. It is, however, an open question whether a*(p) is always

equal to a(p) or not.

The great importance of primal ideals lies in the fact that the fol-

lowing theorem may be proved in complete generality, without mak-

ing use of any condition.

Theorem 1. Every irreducible ideal is primal.

The proof is based on a simple law on forming ideal quotients.9

Let t be any irreducible ideal and bi, 62 two elements which are not

prime to t.Then i: (&i) and t:(o2) are proper divisors of t, hence their

intersection t: (&i)fM: (ö2) =t:((6i) + (ö2)) cannot equal t, conse-

quently, the element h — b2 cannot be prime to t, q.e.d.

3. The intersection of primal ideals. We now inquire when the

intersection of primal ideals is again primal. It will seem no doubt

somewhat surprising at first glance that the intersection of two

primal ideals with the same adjoint prime ideal is not necessarily

primal, not even in rings with basis theorem. For instance, in the

polynomial domain considered above (*2, xy) and (xy, y2) are primal

ideals both adjoint to (x, y), but they have for intersection a non-

primal ideal, namely (ay).10 But if we restrict ourselves merely to

reduced11 intersections, we may state the following theorem.

Theorem 2. The reduced intersection of a finite number of primal

ideals a = gin • • • Hg„ with with pi, • • • , p„ as adjoint prime ideals

is again primal if and only if one prime ideal py divides all other p<.

Then py is adjoint to a.

From the hypothesis that the intersection giA • • • Hg„ is reduced,

we infer by a theorem of E. Noether12 that b is not prime to a if and

only if it is not prime to at least one of g,-, that is, if and only if

• o: (bi+6j) =a: biOab2. See, for example, B. L. van der Waerden, Moderne Algebra,

vol. 2, 2d ed., Berlin, 1940, p. 25.
10 * and y are not prime to (xy), but x—y is prime to it.

11 "Reduced" means that no component may be replaced by one of its proper

divisors.

ls See Noether, loc. cit. footnote 2, Satz X, p. 45.
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b belongs to at least one of the p<. This tells us that 0 is primal if and

only if the union of the elements of all p,- is a prime ideal. Since

the sufficiency of the stated condition is thus clear, to bring the proof

to an end we must still show that the union of the elements of a finite

set of primes is not a prime ideal again unless one divides all others.

Let pi*, • • • , pt* denote the different maximal ones of pi, • • • , p„,

that is, those which are divided by no different one in the set of

pi, • • • , pn; further assume k>l. None of pf* divides another one;

we can therefore find elements pi (1 = 1, ■ ■ • , k) contained in

pi*n • • • np*_inp,*+in • • • Hp** but not in pj*. If a were primal,

the fact that the pj are not prime to a would imply that p = pi-\- - - •

■\-ph is not prime to a. Hence p would belong to one of the p< and so,

a fortiori, to one of pj*. This is, however, a contradiction, since each

pm except pi belongs to p:*. The proof is thus completed.

As an immediate consequence of Theorem 2 we may establish that

in a ring with maximal condition an ideal is primal if and only if one

of the prime ideals associated with its representation (ii) contains all

the others. The assertion becomes evident in view of Theorem 2 if

one takes into account that the same prime ideals are associated

with representation (i) as with (ii) and, further, that a shortest ir-

reducible representation is at the same time reduced.13 This fact im-

plies that if p adjoint to the primal ideal g is a minimal prime ideal in

a ring with maximal condition, then g is primary, for its associated

prime ideals are multiples of p and so necessarily equal to p.14

4. The existence of primal decompositions. Now we shall be con-

cerned with decompositions into primal ideals. The bare existence of

primal decompositions is all that we can prove in general.

Theorem 3. Every ideal is representable as the intersection of its

primal divisors.

Since the unit ideal o is primal and divides each ideal, the inter-

section of the primal divisors of an arbitrary ideal a exists and, what

is quite evident, divides a. What we have thus to prove is that if a

does not belong to a, there is a primal divisor of a which does not

contain a. By Zorn's well known lemma18 we may conclude that there

exists an ideal g dividing a but not containing a such that each proper

13 Cf. Noether, loc. cit. footnote 2, Hilfssatz ii, p. 35.

14 The intersection of a finite number of primary ideals associated with the same

prime ideal is primary again; see, for example, van der Waerden, loc. cit. footnote 9, p.

32.
u M. Zorn, A remark on method in transfinite algebra, Bull. Amer. Math. Soc. vol.

41 (1935) pp. 667-670.
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divisor of g contains a. Let bi, b2 be elements not prime to g and

determine C\, c2 not in g such that 0iCi£g, 02c2Gö- The ideals g-f-(ci)

and g + (c2) are proper divisors of g, therefore both contain a, a£g

+ (ci) and a£g+(c2). We hence have a&i£ö&i+(AiCi) Cfl and similarly

ao2Go> so that one may see that bi — b2 is not prime to g, for, while

a(bi—fa) Gg, a itself does not belong to g.1*

5. Finite decompositions. In order to analyze the finite primal

decompositions, instead of confining ourselves merely to rings with

ascending chain condition we shall consider somewhat more general

rings. We want to establish, as far as we can, the existence of a de-

composition into a finite set of primal ideals and even the unicity of

the prime ideals adjoint to the components. It appears to be necessary

to restrict ourselves to rings in which every ideal is representable as

the intersection of a finite number of irreducible ideals as well as to

normal representations.17 Our stated problem is completely solved

only in such rings and for such decompositions.

Given any ideal o, we start with one of its finite shortest, and so

necessarily reduced, irreducible representations and unite all com-

ponents whose adjoint prime ideal p is the same as or is a multiple of

an arbitrary maximal pj, say, of pi. Then, by Theorem 2, we obtain a

new primal ideal with pi as adjoint prime ideal. Thus proceeding, we

finally arrive at a shortest primal decomposition which will be re-

duced18 and hence normal.

Theorem 4. In a ring where each ideal may be represented as the

intersection of a finite set of irreducible ideals, each ideal possesses a

normal decomposition into a finite number of primal ideals.

6. The unicity statement. Finally, we establish the unicity of the

" I am indebted to Professor Nathan Jacobson for having called my attention to

N. H. McCoy's paper, Subdirectly irreducible commutative rings, Duke Math. J. vol.

12 (1945) pp. 381-387, whose Theorem 1 includes Theorem 3 of the present paper.

The residue class ring 9}/g with respect to the ideal g constructed in the proof of

Theorem 3 is subdirectly irreducible in the sense of G. Birkhoff (Bull. Amer. Math.

Soc. vol. 50 (1944) pp. 761-768); further, 9t/a is the subdirect union of the sub-

directly irreducible rings SR/ß. McCoy's cited theorem (especially part (ii)) asserts

that in 9J/g the divisors of zero form an ideal, namely p/g, that is, g is primal. (Mc-

Coy's Theorem 2 corresponds to the trivial case where 0 is adjoint to g).

17 We use the term "normal" to mean representations which are shortest and re-

duced.

18 Noether has proved (loc. cit. footnote 2, pp. 36-37) that if all components may

be represented as the intersection of a finite number of irreducible ideals, then the

reducedness does not alter during the procedure of joining some components into one

ideal.
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adjoint prime ideals of normal primal decompositions.19

If ct = ßin • • • Hg» and a = g*H • • • C\q^ are two normal primal

decompositions with the adjoint prime ideals pi, • ■ • , p„ and

fi*. * " ' . Pm respectively, we first show that each p< (i = l, • • • , re)

is divided by one of pj* (j = l, • • • , m) and each pj* by one of p,-. For

if pi were divided by no one of pj*, we should get a contradiction as

follows. The hypothesis admits of choosing an element pj in pif^pi*

C\ ■ ■ ■ npj^ripf+iPi • • • P\p*. (forj = l, • • • , m) such that £,does
not belong to pj*. Then p=pi+ • • • +pm will belong to pi but to

none of p *, a contradiction, since p is not prime to a, and therefore,

if we use Theorem 2, it must belong to one of pj*.

If now pi* divides pi and is divided by p«, then pt divides pi; this is

impossible unless p« = pi. Hence we get pi = pi* and the theorem that

we are going to formulate is proved.

Theorem 5. In two finite normal primal decompositions of an ideal

the numbers of the components as well as their adjoint prime ideals are

necessarily the same.19

7. An illustration. An example will establish that the primal de-

composition coincides in general with no other one of (i)—(v). In the

polynomial ring of x, y, z decompositions (ii) and (iii) of the ideal

to = (x2y, xy2z2) are:

(ii) fo = (x) r\ (y) H (z2, y2) f~\ (x\ z2)

with (x), (y), (x, y), (x, z) as associated prime ideals;

(iii) to = (**, *y2z2) C\ (y)

with the radicals (x), (y).

A normal primal decomposition of to is to = (xiy, xy2)r\(x2, z2), the

adjoint prime ideals being (x, y) and (x, z). It is interesting that in

this case there exists a shortest quasi-primary decomposition which is

at the same time normal primal, namely to = (x2, xz2)C\(x2y, y2)

with the radicals (x), (y) and with the adjoint prime ideals (x, z),

(x, y).

Finally, to is a relatively-prime-indecomposable ideal.

Budapest, Hungary

11 Without reducedness the statement is not true. For example, (xy) = (x)C\(y)

= (x*, xy)r\(y) = (x)f~\{xy, y1) =      xy)r\(xy, y5) where the adjoint prime ideals are

(*), (y); (*, y), (y); (*), (*, y); (*, y), (*, y)-
10 On using the unicity of the associated prime ideals of decomposition (i), Theorem

5 is evident in rings with basis theorem.
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