A proof that the group of all homeomorphisms of the plane onto itself is locally arcwise connected
HTML articles powered by AMS MathViewer
- by M. K. Fort
- Proc. Amer. Math. Soc. 1 (1950), 59-62
- DOI: https://doi.org/10.1090/S0002-9939-1950-0033017-8
- PDF | Request permission
References
- Ralph H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432. MR 12224, DOI 10.1090/S0002-9904-1945-08370-0
- M. Bebutoff, Sur les systèmes dynamiques dans l’espace des fonctions continues, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 904–906 (French). MR 0003473
- Harry Merrill Gehman, On extending a continuous $(1\text {-}1)$ correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc. 28 (1926), no. 2, 252–265. MR 1501343, DOI 10.1090/S0002-9947-1926-1501343-X
- Richard Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593–610. MR 19916, DOI 10.2307/2371787
- Garrett Birkhoff, The topology of transformation-sets, Ann. of Math. (2) 35 (1934), no. 4, 861–875. MR 1503201, DOI 10.2307/1968499 J. Schreier and S. Ulam, Über topologische Abbildungen der euklidischen Sphären, Fund. Math. vol. 23 (1934) pp. 102-118. J. W. Alexander, On the deformation of $n$-cell, Proc. Nat. Acad. Sci. U. S. A. vol. 9 (1923) pp. 406-407. J. H. Roberts, Concerning homeomorphisms of the plane into itself, Bull. Amer. Math. Soc. Abstract 44-9-402.
Bibliographic Information
- © Copyright 1950 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 1 (1950), 59-62
- MSC: Primary 56.0X
- DOI: https://doi.org/10.1090/S0002-9939-1950-0033017-8
- MathSciNet review: 0033017