A DERIVATION OF ZORAWSKI’S CRITERION FOR PERMANENT VECTOR-LINES

R. PRIM AND C. TRUESDELL

The classical hydrodynamic theorems of Helmholtz state that in any motion of an inviscid, incompressible fluid subject to conservative extraneous force the vortex-tubes are material tubes whose strength is constant in space and time. They were extended to barotropic motions of compressible fluids by Kelvin and Nanson. Underlying these theorems of hydrodynamics are three purely kinematical questions:

1. What is a necessary and sufficient condition that the strength of the vector-tubes of a continuously differentiable vector field c be the same at all cross-sections?

2. Given a continuously differentiable velocity field $v(r, t)$, what is a necessary and sufficient condition that the strength of the vector-tubes of a second continuously differentiable field $c(r, t)$ remain constant throughout the motion?

3. Given a continuously differentiable velocity field $v(r, t)$, what is a necessary and sufficient condition that the vector-tubes of a second continuously differentiable field $c(r, t)$ be material tubes?

The answer to the first question was given by Kelvin, prior to the work of Helmholtz, the required condition being

\[\text{div } c = 0. \]
The answer to the second question was given by Zorawski, the required condition being
\[
\frac{Dc}{Dt} - c \cdot \text{grad} \: v + c \text{ div } v = 0,
\]
where \(D/Dt \) is the symbol of material differentiation. This result is really an immediate consequence of a formula given earlier by Lamb. The answer to the third question was also given by Zorawski, the required condition being
\[
c \times \left[\frac{Dc}{Dt} - c \cdot \text{grad} \: v + c \text{ div } v \right] = 0,
\]
which was implicit in the infinitesimal analysis of Helmholtz and Nanson. The purpose of the present note is to give a simple vectorial derivation of the criterion (3).

Let a single material line be given by \(r = r(\theta, t) \), where \(\theta \) is a parameter along the curve and \(t \) is the time; the same coordinate is associated with each material point at all times, so that \(\theta \) and \(t \) are independent variables. Then
\[
\frac{D}{Dt} \left(\frac{\partial r}{\partial \theta} \times c \right) = \frac{\partial v}{\partial \theta} \times c + \frac{\partial r}{\partial \theta} \times \frac{Dc}{Dt},
\]
\[
= \left(\frac{\partial r}{\partial \theta} \text{ grad } v \right) \times c + \frac{\partial r}{\partial \theta} \times \frac{Dc}{Dt}.
\]
Now if at the instant \(t=0 \) the material curve in question is a vector-line of \(c \), we shall have
\[
\frac{\partial r}{\partial \theta} \times c = 0, \quad \text{or} \quad \frac{\partial r}{\partial \theta} = \lambda c,
\]
where \(\lambda \) is a scalar function. Then (4) becomes

\[\text{License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use}\]

\[\text{Loc. cit.}\]

\[\text{License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use}\]
A necessary and sufficient condition that the material line remain a vector-line of \(c \) is that (5) hold at all times. Since \(c \times c = 0 \), from (6) we may then deduce the necessity of (3). Conversely, if (3) be satisfied, then \(\frac{\partial \mathbf{r}}{\partial \theta} \times \mathbf{c} \) at each point on the material line is a quantity initially zero whose time derivative is always zero, and hence itself remains zero, so that (3) is also sufficient.

Since (3) is a consequence of (2), but (2) is not generally a consequence of (3), in order for the vector-tubes of \(c \) to be of strength constant in time it is necessary, but not sufficient, for the vector-tubes to be material tubes. The criterion (1) has not been used in the deduction of (2) or (3); thus even if the vector-tubes are of strength constant in time at each material cross-section they are not generally of equal strength at all cross-sections.

If \(c = \nabla \times \mathbf{v} \), (1) is satisfied and (2) and (3) become respectively

\[
\frac{D}{Dt} \left(\frac{\partial \mathbf{r}}{\partial \theta} \times \mathbf{c} \right) = \lambda \mathbf{c} \times \left(\frac{D\mathbf{c}}{Dt} - c \cdot \text{grad} \ \mathbf{v} \right).
\]

(7)

\[
\nabla \times \mathbf{a} = 0,
\]

(8)

\[
\nabla \times \mathbf{v} \times \nabla \times \mathbf{a} = 0,
\]

where \(\mathbf{a} \) is the acceleration. It is easy to show that (7) is a necessary and sufficient condition that the circulation around an arbitrary closed material curve be constant throughout the motion. From (8) it follows that the constancy of circulation is sufficient but not necessary in order to ensure the permanence of the vector-tubes.

Princeton University and
University of Maryland