Tschebyschef's theorem
\[\alpha \frac{x}{\log x} \leq \pi(x) \leq \gamma \frac{x}{\log x} \]
now follows at once.

Reference

New York University

THE RADICAL OF A NON-ASSOCIATIVE RING

W. E. JENNER

In this paper a definition is proposed for the radical of a non-associative ring. Our results are somewhat similar to those given for algebras by Albert in [3], but the difficulties that arose in the earlier theory from absolute divisors of zero have been overcome. With slight modifications, the present proofs are applicable to algebras.

A non-associative ring \(R \) is an additive abelian group closed under a product operation with respect to which the two distributive laws hold. Multiplication on the right (left) by a fixed element \(x \in R \) determines an endomorphism \(R_x \) \((L_x) \) of \(R \) as an additive group. For \(x, y \in R \),
\[x \cdot y = xR_y = yL_x. \]

The \(R_x \) and \(L_y \) generate an associative ring \(A \) called the transformation ring of \(R \). Clearly \(A \) can be construed as a representation space for \(A \), and this representation is faithful. The two-sided ideals of \(R \), which are defined as for associative rings, are exactly the \(A \)-subspaces of \(R \). The theory of ring homomorphisms goes over intact to the non-associative case.

A nonzero element \(a \in R \) is called an absolute divisor of zero if \(a \cdot x = x \cdot a = 0 \) for all \(x \in R \). If \(A \) has a unit element \(I \) and \(R \) contains no absolute divisors of zero, then the unit element \(I \) is the identity.

Received by the editors March 19, 1949.

1 Numbers in brackets refer to the references cited at the end of the paper.
mapping on \(R \). For if \(aI = b \) where \(a, b \in R \), then \(aI - b = 0 = (aI - b)I = (a - b)I \), \((a - b)I = 0 \) and so \(a = b \).

We now assume that the minimum condition holds in \(R \). It has been shown in [5, Theorems 3 and 14] that for the case of simple rings this is equivalent to the assumption that \(R \) can be regarded as an algebra of finite dimension over a certain field.

Theorem 1. Let \(A \) satisfy the minimum condition and \(R \) contain no absolute divisors of zero. Then \(R = R_1 \oplus R_2 \oplus \cdots \oplus R_n \), where the \(R_i \) are simple if and only if \(A = A_1 \oplus A_2 \oplus \cdots \oplus A_n \) where the \(A_i \) are simple, and conversely.

Proof. If \(R = R_1 \oplus R_2 \oplus \cdots \oplus R_n \) where the \(R_i \) are simple, then \(R = A_1 \oplus A_2 \oplus \cdots \oplus A_n \) where \(A_i \) is the transformation ring for \(R_i \). Since \(R_i \) is an irreducible \(A_i \)-space, it follows that \(A_i \) is simple. Conversely, suppose \(A = A_1 \oplus A_2 \oplus \cdots \oplus A_n \) where the \(A_i \) are simple rings generated by pairwise orthogonal idempotents \(E_i \) in the center of \(A \). Clearly \(R = R_1 \oplus R_2 \oplus \cdots \oplus R_n \), where \(R_i = RE_i \). It is easily seen that \(A_i \) is the transformation ring for \(R_i \). If \(R_i \) has a proper ideal \(M_i \), then \(R_i = M_i \oplus N_i \), a direct sum of \(A_i \)-subspaces since \(A_i \) is semisimple. Let \(\mathcal{E} \) be the ideal of \(A_i \) which annihilates \(M_i \). For every nonzero element \(x \) in \(R_i \), \(R_x \) and \(L_x \), at least one of which must be nonzero, are in \(\mathcal{E} \). Clearly \(E_i \) is not in \(\mathcal{E} \) and so \(\mathcal{E} \) is a proper ideal of \(A_i \), which is impossible. Therefore \(R_i \) is simple.

Corollary. Under the assumptions of Theorem 1, \(R \) is simple if and only if \(A \) is simple.

The ring \(R \) is defined to be semisimple if the following conditions are satisfied:

(i) \(A \) satisfies the minimum condition.

(ii) \(R \) contains no absolute divisors of zero.

(iii) \(R \) is a direct sum of simple rings.

We now eliminate the restriction that \(R \) contain no absolute divisors of zero. Suppose \(R \) has an ideal \(S \). Let \(\mathcal{S} \) be the set consisting of all \(S \in A \) such that \(RS \subseteq \mathcal{S} \). Clearly \(RA_i \subseteq RA \subseteq \mathcal{S} \) and \(RA \subseteq S \subseteq \mathcal{S} \). Furthermore, \(\mathcal{S} \) is an additive subgroup and so an ideal of \(A \). Let \([x] \) and \([y] \) be any two residue classes of \(R - S \). Then \([x] \cdot [y] = [x \cdot y] = [xR_y] = [yL_x] \). If \([x^U] = [x^V] \) for all \(\{x\} \in R - S \) where \(U, V \in A \), then \(U - V \in \mathcal{S} \) and so right (left) multiplication by a fixed element of \(R - S \) determines a unique residue class of \(A - \mathcal{S} \). Then it is easy to prove that \(A - \mathcal{S} \) is isomorphic to the transformation ring for \(R - S \). It follows immediately that if \(A \) satisfies the minimum
condition, then so does the transformation ring for any difference ring of \mathcal{R}.

Let \mathcal{M}_1 be the ideal consisting of zero and all absolute divisors of zero in \mathcal{R}. Continuing by induction, let \mathcal{M}_{i+1} be the set consisting of all $x \in \mathcal{R}$ such that $a \cdot x$ and $x \cdot a \in \mathcal{M}_1$ for all $a \in \mathcal{R}$. The \mathcal{M}_i are ideals of \mathcal{R} and $\mathcal{M}_i \subseteq \mathcal{M}_{i+1}$.

Lemma 1. \mathcal{M}_{i+1} is the set consisting of all $x \in \mathcal{R}$ such that R_x and L_x are left-annihilators of \mathcal{M}_i.

Proof. Suppose $x \in \mathcal{M}_{i+1}$. Then aR_x and $aL_x \subseteq \mathcal{M}_i$ for all $a \in \mathcal{R}$. Each succeeding application of transformation in \mathcal{A} gives rise to an element in the preceding \mathcal{M}_i. Clearly $aR_x T_1 T_2 \cdots T_j = aL_x T_1 T_2 \cdots T_j = 0$ for all $a \in \mathcal{R}$, where T_1, T_2, \cdots, T_j are arbitrary elements of \mathcal{M}_i. Therefore $R_x T_1 T_2 \cdots T_j = L_x T_1 T_2 \cdots T_j = 0$ and so R_x and L_x are left annihilators of \mathcal{M}_i. Conversely, if $aR_x T_1 T_2 \cdots T_j = aL_x T_1 T_2 \cdots T_j = 0$ for all $a \in \mathcal{R}$, where T_1, T_2, \cdots, T_j are arbitrary elements of \mathcal{M}_i, then $aR_x = T_1 T_2 \cdots T_j$ and $aL_x = T_1 T_2 \cdots T_j$ are in \mathcal{M}_i by definition of \mathcal{M}_i. Continuing in this way, it is easily seen that aR_x and aL_x, that is, $a \cdot x$ and $x \cdot a$ are in \mathcal{M}_i for all $a \in \mathcal{R}$ and so $x \in \mathcal{M}_{i+1}$.

Lemma 2. If \mathcal{A} satisfies the minimum condition, then there exists a least integer l such that $\mathcal{M}_l = \mathcal{M}_{l+1}$.

Proof. Let k be the first integer for which $\mathcal{A}^{k-1} = \mathcal{A}^k$. The existence of k is insured by the minimum condition on \mathcal{A}. Suppose x is an element of \mathcal{M}_{k+1} not in \mathcal{M}_k. By Lemma 1, R_x and L_x would be left-annihilators of \mathcal{M}_i but not both of \mathcal{A}^{i-1}. This is impossible, and so $\mathcal{M}_{k+1} = \mathcal{M}_k$. Therefore k is an upper bound for l and the lemma is proved.

In particular, if \mathcal{A} has a unit element, then $\mathcal{M}_3 = \mathcal{M}_1$, since \mathcal{A} can have no left-annihilators.

Theorem 2. Let \mathcal{A} satisfy the minimum condition. Then $\mathcal{R} - \mathcal{M}_1$ has no absolute divisors of zero. Furthermore, \mathcal{M}_1 is contained in every ideal \mathcal{H} for which $\mathcal{R} - \mathcal{H}$ has no absolute divisors of zero.

Proof. If $a \cdot x$ and $x \cdot a \in \mathcal{M}_1$ for all $a \in \mathcal{R}$, then $x \in \mathcal{M}_{i+1} = \mathcal{M}_1$. This proves the first part. Suppose $\mathcal{R} - \mathcal{H}$ has no absolute divisors of zero. Clearly $\mathcal{M}_1 \subseteq \mathcal{H}$. Now assume $\mathcal{M}_1 \subseteq \mathcal{H}$. If $x \in \mathcal{M}_{i+1}$, then both $a \cdot x$ and $x \cdot a \in \mathcal{M}_1 \subseteq \mathcal{H}$ for all $a \in \mathcal{R}$ and so $x \in \mathcal{H}$. Therefore $\mathcal{M}_1 \subseteq \mathcal{H}$.

Lemma 3. If \mathcal{A} satisfies the minimum condition and $\mathcal{R} - \mathcal{H}$ is semi-

In the case of Lie rings, the \mathcal{M}_i constitute the upper central chain.
simple, then \(R \subseteq \mathfrak{S} \) where \(R \) is the radical of \(\mathfrak{A} \).

Proof. The transformation ring for \(\mathfrak{A} - \mathfrak{S} \) is isomorphic to \(\mathfrak{A} - \mathfrak{G} \) where \(\mathfrak{G} \) is the ideal consisting of all \(S \subseteq \mathfrak{A} \) such that \(\mathfrak{R}S \subseteq \mathfrak{S} \). By Theorem 1, \(\mathfrak{A} - \mathfrak{G} \) is semisimple. Therefore \(\mathfrak{R} \subseteq \mathfrak{S} \), and so \(\mathfrak{R} \subseteq \mathfrak{R} \mathfrak{S} \subseteq \mathfrak{S} \).

We now consider the ideal \(\mathfrak{M} \) for the ring \(\mathfrak{R} - \mathfrak{R} \mathfrak{M} \). The existence of this ideal follows from Lemma 2 since the transformation ring for \(\mathfrak{R} - \mathfrak{R} \mathfrak{M} \) satisfies the minimum condition. Let \(\mathfrak{M} \) be the complete reciprocal image of \(\mathfrak{M} \) under the natural homomorphism \(\mathfrak{R} \rightarrow \mathfrak{R} - \mathfrak{R} \mathfrak{M} \). The ideal \(\mathfrak{M} \) will be called the **radical** of \(\mathfrak{R} \). Since \(\mathfrak{R} - \mathfrak{M} \cong (\mathfrak{R} - \mathfrak{R} \mathfrak{M}) - \mathfrak{M} \), it follows from Theorem 2 that \(\mathfrak{R} - \mathfrak{M} \) has no absolute divisors of zero. The transformation ring for \(\mathfrak{R} - \mathfrak{M} \) is isomorphic to \(\mathfrak{A} - \mathfrak{G} \), where \(\mathfrak{G} \) is the ideal consisting of all \(S \subseteq \mathfrak{A} \) such that \(\mathfrak{R}S \subseteq \mathfrak{R} \). Clearly \(\mathfrak{R} \subseteq \mathfrak{G} \) and so \(\mathfrak{A} - \mathfrak{G} \) is semisimple. Theorem 1 then implies

Theorem 3. Let \(\mathfrak{A} \) satisfy the minimum condition. Then \(\mathfrak{R} - \mathfrak{M} \) is semisimple.

That \(\mathfrak{M} \) is the minimal ideal having this property is shown by

Theorem 4. If \(\mathfrak{A} \) satisfies the minimum condition and \(\mathfrak{R} - \mathfrak{S} \) is semisimple for some ideal \(\mathfrak{S} \), then \(\mathfrak{M} \subseteq \mathfrak{S} \).

Proof. By Lemma 3, \(\mathfrak{R} \mathfrak{S} \subseteq \mathfrak{S} \). Clearly \((\mathfrak{R} - \mathfrak{M}) - (\mathfrak{S} - \mathfrak{R} \mathfrak{M}) \cong (\mathfrak{R} - \mathfrak{R} \mathfrak{M}) - \mathfrak{M} \) and so by Theorem 2, \(\mathfrak{M} \subseteq \mathfrak{S} - \mathfrak{R} \mathfrak{M} \), which implies \(\mathfrak{M} \subseteq \mathfrak{S} \).

The writer is indebted to D. C. Murdoch for suggesting Lemma 1.

References

The University of British Columbia