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1. Introduction. Since the time of Lucas many papers have ap-

peared investigating the properties of sequences of rational integers

satisfying linear recurrence relations. Very little,1 however, has been

done in the nonlinear cases, although the generalization to variable

coefficients seems to have awakened more interest than the general-

ization to relations of higher degree but with fixed coefficients. The

present paper deals with one of the simplest problems of the latter

type.

Let a sequence be defined by the value Xi and by the relation:

(1) Xn+i = (axn + b)/(cxn + d);

ad—bes^O; a, b, c, d, rational integers. Under what conditions are all

the xt integral? That such integral sequences exist may be shown by

two examples. First, if x„+i = x„/(x„— 1), Xi = 2 generates the sequence

2, 2, 2, • • • ; second, if xB+i = (178x„ — 1492)/(7x„ + 2), Xi = 4 gen-

erates the sequence 4, —26, 34, 19, 14, 10, 4, • • • . If we write

yn = cxn-\-d, e = a-j~d, m = bc — ad, (1) becomes:

(2) yn+i = e + m/yn

where {y,} is integral if {x<} is.

Theorem 1. Every sequence of integers satisfying (1) or (2) is

periodic.

Proof. In (2) every y„ must be one of the finitely many divisors

of m. The periodicity of {y<} entails that of {x,}. Moreover, the

period begins with the first term of the sequence, since each value of

x„ permits only one value for x„_i.

2. Classification by fixed points. The possible sequences satisfying

(2) are related to the roots, rx and r2, of r2 — er — m = 0.

Theorem 2. If the roots are real and of unequal magnitude there are

no sequences satisfying (2) or just two such sequences, each of period

one. In the latter case rx and r2 are integral and generate the two se-

quences.
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1 An exception is Morgan Ward's recent memoir on "elliptic" divisibility sequences

in vol. 70 of the American Journal of Mathematics.
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(3)

Proof. Suppose |ri| <|r2| and write (2) as:

. yn+i - fi     r,  y„ - r2     / rA" yi -

yn+i — rx      r2 yn — r,     \ r2.

yx = r\ only if r% is integral and the sequence is r%, r%, ru ■ • ■ . Other-

wise lim„^0O(ri/r2)B = 0, and lim„,00(y„+i-r2)/(yn+i-n) =0, which

is only possible if yn+i = r2.

If the roots are real and equal except for sign, e = 0 so that we may

take yi as any divisor of m and the sequence becomes:

If ri = r2 = r, (3) is of no use and instead we define a sequence,

Po, pi, pi, • ■ ■ by po = l, p\=yi, pn+t = epn+i+mpn. Then:

Lemma 1. ya=pn/p„-i.

Proof. Set pn/pn~i = Qn- Then gi = yi, and the recurrence relation

becomes:

(4) qn+2qn+ipn = eqn+ipn + mpn.

Now, from the theory of second order recurrence sequences we know

that the general solution for pn is p„ = (An+B)rn, where A and B

are not both zero since po = 1. Evidently p„ = 0 for at most one value

n = t. For all values of n except t, (4) then reduces to

which is the same relation satisfied by the yi without exception. The

g-sequence and the y-sequence therefore agree in their first t+1 terms.

Also, in both, the i-|-2nd term is equal to e, in the y-sequence because

yt+i is infinite, in the g-sequence by setting pt = 0 in the second order

recurrence relation and using the definition of qt+2. Therefore the two

sequences agree in all their terms and the lemma is proved.

Thus it is required that ((An+B)/(A{n — 1)+B))r=yn should be

integral for all values of n. But, if A=Q, yn = r, and otherwise

lim,,.«, yn = r, so that again the only possible sequence occurs when r

is integral. This gives:

Theorem 3. If r\ = r% = r, there is just one sequence satisfying (2) or

none according as r is or is not an integer. In the former case the se-

quence is r, r, r, • • • .

yu m/yu yu m/y.

m
?n+2 = e +

Inasmuch as we have already seen an example of a sequence of
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period six, we may expect the case of complex roots to be more

difficult. For real roots, of course, it is hardly necessary to use (2)

since (1) and the value of e give all the required information.

3. Complex roots. Again we consider the linear recurrence relation:

(5) Pn+l = epn + mpn-l,

but this time define a sequence {pi} by the initial values po = 0,

pi=l. This is called the principal sequence, and its first seven terms

are 0, 1, e, e2+m, e3 + 2em, e4 + 3e2m + m2, e5+4e3w + 3m2. Using this

sequence, we obtain the following result:

Theorem 4. // {yi} satisfies (2) and {pi} is the principal solution

of (5), then

pnyi + mpn-\

yn =-•

Pn-iyi + mpn-2

The proof is by induction.

Theorem 5. The sequence {yi} satisfying (2) has a period w if and

only if pw = 0.

Proof. Suppose pw = 0. Then by (5), pw+i=mpw-i and from

Theorem 4, yw+i = yi. On the other hand, suppose yw+\ = y\. Then:

pwyi + mpw-iyi = pw+iyi + ntpw,

2 2

Pv>yi — (pw+i — mpw-i)yi — mpw = 0 = pwyx — epwyi — mpw,

2

pw(y\ — eyi - m) = 0,

and since the factor in parentheses cannot be zero, pw = Q.

Of course the period of {y,} is the smallest value of w>0 for which

pw = 0.

Lemma 2.2 If {pi} is the principal solution of (5), for n>0 pn is a

homogeneous polynomial of degree [in —1)/2] in the variables e2 and m

if n is odd, and e times such a polynomial if n is even. In both cases all

the coefficients are integers and the coefficient of the highest power of e is

unity.

2 The proof beginning here is not the one that most readily suggests itself. If pn

is expressed explicitly in terms of the scalar roots, namely, as pn = (r"—r°)/(,r-i — ri),

the problem of finding its zeros reduces to that of determining the exponent of an

element in a quadratic field. But the proof given above relies on simpler and some-

what more relevant ideas.
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The proof is by induction.

It follows from Theorem 5 that if (2) is satisfied by some integral

sequence {y,} with period w, the values of e and m from (2) make the

homogeneous polynomial of Lemma 2 zero. Consequently e2/m is the

root of a polynomial with integral coefficients and leading coefficient

unity. Therefore, since the root is rational it must be integral and we

have:

Lemma 3. pw = 0 only if e2-\-km = 0 for some integer, k.

Not all values of k correspond to a w however, as is seen from:

Theorem 6. If ri and r2 are complex, and if {y, } satisfies (2) with

period w, then e2-\-km = 0 for one of four values of k, £ = 0,1, 2, or 3,

corresponding respectively to w = 2, 3, 4, or 6.

Proof. Since the roots are complex, e2+4w<0 and m<0. There-

fore e2+km>0 for £<0, and e2-\-km<0 for k — 4. Only four values of

k remain, and we obtain the corresponding periods from the factoriza-

tion of the first seven terms of the sequence {pi}.

4. The complete period. We now know that any sequence {yi} of

integers satisfying (2) must be periodic, and conditions on e and m in

(2)—or on a, b, c, and d in (1)—for periodicity. But these conditions

do not guarantee that for an arbitrary value of yi, or even for any

value of yi, the sequences {xt} and {y,} should be entirely integral.

We establish certain preliminary theorems.

Thorem 7. If w is the period of a sequence {yi} of integers satisfy-

ing (2), then (yry2 • • • yw)2= ( — m)w.

Proof. ri = e+m/ri for i=l and 2. Subtracting both these equa-

tions from (2) and multiplying the results, we obtain:

m2
(y«+i - ri)(yB+i - r2) =        2  (y» - ri){yn - r2)

rir2y„

or, if Q{y) =y2 — ey — m,

— m
Q(y*+i) = — ö(y-).

yn

Multiplying these equations over a complete period we obtain the

result, since Q(y) 5^0 for y real.

Corollary 1. If an integer s divides each term of {yi}, then s2\ m

and s I e.
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Proof. From Theorem 7, 52w| (— m)w or s2\m. Then, from Theorem

6, s\e.

Corollary 2. If {x,} is a sequence of integers satisfying (1) and if

s = (c, d), then s\a and s\b. Accordingly we may assume (c, d) =1.

Proof. Every term of the sequence {y,} derived from {*,•} is

divisble by s. By Corollary 1, s\e = a+d, and therefore s\a. Writing

(1) as

xn+i(cxn + d) = axn + b,

we have s\ b.

Definition. Let R(g, h) be the greatest divisor of g prime to h.

Then, for example, R(6, 9)=2;i?(9, 6) = 1.

Theorem 8. An integral sequence {#,} satisfying (1) corresponds to

an integral sequence {y, } satisfying (2) if and only if c is a divisor of

R(yi-yi, yi)-

Proof. If we begin with the sequence {»,}, then yi = cxi+d,

y2 = cx2+d, and c\ (yi — yi). By Corollary 2 we may assume that c is

prime to d, consequently to each y,, and in particular to y\.

Start, however, from a sequence {y, } and let c be any divisor of

R(yi—yt, yi). Choose an arbitrary integer x\ and define d by y\ = cx\

+d. Then, since (c, yi) = l, (c, d) = l. Next, define a by means of

e = a-\-d. Now, since c\ (yi — y2), y\ = yi = i (mod c), and writing (2) as

(6) yn+iyn = ey„ + m,

we have d2 = ed-\-m (mod c) by taking «=1, or, d(d — e)=m=—ad

(mod c), using the definition of a. So, (m-\-ad)/c is an integer, say b.

We thus have found integers, a, b, c, and d, such that, in (2), e = a-\-d

and m = bc — ad. It remains to show that all the x< are integral.

Obviously, this will be true if and only if y,=d (mod c) for each i.

We already know this for i= 1, and from (6), if yn=d (mod c),

yn+id = (a + (f)d — ad (mod c) =■ d2

or, since (c, d) = l, y„+l = d (mod c).

Corollary. For any given sequence {y,-} of integers satisfying (2),

R(yn — yn+h yn) is a constant.

Proof. Since {y, } is periodic, it does not matter which term we

consider the first in defining a value of c as in Theorem 8. In particu-

lar, the largest possible value of c cannot change.
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5. Parametric solution. Theorem 8 completely elucidates the con-

nection between sequences satisfying (2) and sequences satisfying (1).

We shall now give a parametric solution to the problem of finding all

possible sequences satisfying (2). Evidently this is hardly necessary

when n and r-i are real or when e = 0, so that by Theorem 6, k = — e2/m

must assume one of the three values 1, 2, or 3. Introducing an

integral parameter /, we must have, according to the value of k,

e = t and m = — t2, or e = 2t and m = — It2, or e = 3t and m = — 3t2. This

gives the first part of the following theorem.

Theorem 9. If e2-\-4m <0 and e^O, the transformation (2) must take

one of three forms:

yn+i = k(t — t2/yn), k = 1, 2, or 3,

•where t is an integer. In addition, there must exist relatively

prime integers, u and v, such that t is divisible by uv(u — v) if k = l,

by either uv(u — v)(u — 2v) or uv(u—v)(u — 2v)/4: according as u is

odd or even if k = 2, or by either uv(u — v)(2u — 3v)(u — 2v)(u — 3v) or

uv(u — v)(2u — 3v)(u — 2v)(u — 3v)/21 according as u is not or is di-

visible by 3. In all cases y\ = ut/v.

Proof. The proof is much the same for any value of k and will be

given for k = 2. If a sequence {y,} of integers satisfies yB+1 = 2/

— 2t2/yn, we may certainly find relatively prime integers, u and v,

such that y\ = ut/v. Then y2, y%, and y4 may be calculated as:

u — v u — 2v —v
2t->       t-1    and 2t-

u u — v u — 2v

It is easily seen that if the fraction u/v is in its lowest terms so are

(u — v)/u, (u — 2v)/(u — v), and v/(u — 2v). Consequently, v\t, u\2t,

(u — v)\t, and (m — 2v)\2t. If u is odd, u, v, u—v, and u — 2v have no

factor in common since (u, v) = l. If u is even, (u, u — 2v)=2. The

theorem follows.

Example. Take w = 4, v = 3. Then / must be divisible by

4-3-1 • ( —2)/4= —6. A possible value for / is r=12 which gives

yi= 16, the transformation being :y„+i = 24 — 288/y„, and the sequence:

16, 6, -24, 36, 16, • • • , R(yi-y%, yd =R(10, 16) =5. Thus, to con-
struct a sequence satisfying (1) we may take c = S, and perhaps—

the choice is arbitrary—Xi = 3; then d = l, a = e — d = 23, b = (m+ad)/c

= —53. The transformation is therefore xn+i= (23x„ — 53)/(5x„ + l),

and the sequence: 3, 1, —5, 7, 3, • • • .
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