ON A SEMI-GROUP OF SUBSETS OF A LINEAR SPACE

R. E. FULLERTON

A family \(\mathcal{J} \) of subsets of a space is defined to be a semi-group of subsets provided that the intersection of any two subsets of \(\mathcal{J} \) is again a subset of \(\mathcal{J} \). In giving a characterization of a Banach space of continuous functions in terms of the geometry of the space, Clarkson\(^1\) considered a cone \(C \) which had the property that the family of all of its translates formed a semi-group. This note is concerned with an investigation of the structure of a subset \(S \) of a linear space \(\mathcal{X} \) such that the family of all translates of \(S \) form a semi-group, that is, for any points \(x, y \) of \(\mathcal{X} \) there exists a \(z \in \mathcal{X} \) such that \((x+S) \cap (y+S) = z+S \). It will be shown that under certain rather weak restrictions, \(S \) must be a convex cone.

Let \(\mathcal{X} \) be an abstract linear space. The only topology which will be assumed for \(\mathcal{X} \) is that which arises from the topology of the straight lines of \(\mathcal{X} \), that is, if \(u_n = \alpha_n x + \beta_n y, x \neq y, \alpha_n + \beta_n = 1, \alpha_n \to \alpha, \beta_n \to \beta \), then \(u_n \to ax + by \). This will be called the linear topology of \(\mathcal{X} \). We shall assume that all straight lines of \(\mathcal{X} \) are complete in this topology. A point \(x \) is an extreme point of a set \(S \) if \(x \in S \) and there exists no line segment with end points in \(S \) which contains \(x \) in its interior. The theorem to be proved is the following:

THEOREM. Let \(S \) be a subset of \(\mathcal{X} \) which is closed in the linear topology and which has at least one extreme point. Let the family of all translates of \(S \) form a semi-group. Then \(S \) is a convex cone, that is, \(S \) is convex and there exists a point \(v \in S \) such that

\[
S = \bigcup_{\lambda \geq 0} \{ y = v + \lambda x, x \in S \}.
\]

The theorem is proved by four lemmas.

LEMMA 1. If \(x+S = S \), then \(x = 0 \).

PROOF. It is evident that any translate of \(S \) can be used initially instead of \(S \). Thus we may assume that \(S \) contains \(0 \) without loss of generality. If \(x+S = S \), \(x \in S \). Also \(S = S-x \) and \(-x \in S \). If \(y \in S \), \(x+y \in S \) and \(-x+y \in S \). However, if \(x \neq -x \) this shows that \(y \) is the midpoint of a line segment joining two points of \(S \) and con-

440
tradscts the hypothesis that S has an extreme point.

Lemma 2. S contains only one extreme point.

Proof. Suppose that S contained at least two extreme points. It may be assumed that one is the point θ. Let the second be $v \neq \theta$. Consider the translation $S + v$. Since θ and v are both extreme points, $2v \in S$ and $S + v$ does not contain S. Hence $(S + v) \cap S = y + S$ where $y \neq \theta$ and y is an extreme point of $y + S$. Also

$$\{v + [(S + v) \cap S]\} \cap S$$

$$= (v + y + S) \cap S \supset (v + y + S) \cap (y + S)$$

$$= y + (y + S) = 2y + S.$$

This shows that v, $y + v$, and $2y + v$ are in S and $y + S$ contrary to the conclusion that y is an extreme point of $y + S$.

Lemma 3. If v is the extreme point of S, S is a cone with vertex v.

Proof. It may be assumed that $v = \theta$. It must be shown that if $x \in S$, then $\lambda x \in S$ for all $\lambda \geq 0$. Since λx is a complete ray, if there exist values of λ for which $\lambda x \notin S$, there must exist a smallest value λ_0 such that $\lambda_0 x \in S$ because of the linear closure of S. $(\lambda_0 x + S) \cap S = y + S$ where y is the extreme point of $y + S$. However, since $\lambda_0 x \in (\lambda_0 x + S) \cap S$, $\lambda_0 x$ is an extreme point of $y + S$ and since there is only one extreme point of the set, $y = \lambda_0 x$ by Lemma 1. Then $\lambda_0 x + S \subseteq S$ and $2\lambda_0 x \in S$. By induction it can be seen that if $\lambda_0 x \in S$, then $n\lambda_0 x \in S$ for any positive integer n. Also there exists a $z \in S$ such that $(2^{-1}\lambda_0 x + S) \cap S = z + S$. This implies the existence of a point $u \in S$ such that $z = u + 2^{-1}\lambda_0 x$. Also, by the first part of the proof, $u + \lambda_0 x \in S$. Since z is the extreme point of $z + S$, $u + (n/2)\lambda_0 x \in z + S \subseteq S$ for every integer n by the same argument as was used in the first part of the proof. Then $S = S - z$ contains all points of the form $u + (n/2)\lambda_0 x - (u + 2^{-1}\lambda_0 x)$. In particular, S contains the point $2^{-1}\lambda_0 x$, contrary to the assumption that λ_0 was the smallest nonzero value of λ for which $\lambda x \in S$. This shows that if $x \in S$, $\lambda x \in S$ for all $\lambda \geq 0$ and S is a cone with vertex θ.

It is to be noted that if θ is the vertex, the above proof shows that if $x \in S$, then $\lambda x \in S$ for all non-negative λ and $\lambda x + S \subseteq S$. Hence, if $y \in S$, $y + \lambda x \in S$ for all $\lambda \geq 0$. This shows that if S contains a ray through any point, it contains a parallel ray through every point of the set.

Lemma 4. S is convex.
Proof. It must be shown that if \(x \) and \(y \) are in \(S \), then \(\alpha x + \beta y \in S \) for \(\alpha, \beta \geq 0, \alpha + \beta = 1 \). If \(S \) has vertex \(\theta \) and if \(y = \lambda x \), this is true by Lemma 3. If \(y \neq \lambda x \), then the rays \(\lambda x, \nu y, \lambda \geq 0, \nu \geq 0 \), are distinct and are in \(S \). If for any point \(\alpha x + \beta y, \alpha, \beta > 0, \alpha + \beta = 1 \), there exists a \(\mu \neq 0 \) such that \(\mu(\alpha x + \beta y) \in S \), then \(\mu(\alpha x + \beta y) \in S \) for all \(\mu \geq 0 \) by Lemma 3. \(S \) contains the ray \(y + \lambda x \) where \(\lambda \geq 0 \). If the existence of positive numbers \(\mu \) and \(\lambda \) can be demonstrated such that \(\mu(\alpha x + \beta y) = y + \lambda x \), the lemma is proved. If this is so, \((\mu x - \lambda)x + (\mu \beta - 1)y = \theta \) and if \(\mu = 1/\beta, \lambda = \alpha/\beta \), the rays \(\mu(\alpha x + \beta y) \) and \(y + \lambda x \) have a common point. Since all points of the form \(y + \lambda x \) are in \(S \), \((1/\beta) (\alpha x + \beta y) \in S \) and hence \(\mu(\alpha x + \beta y) \in S \) for all \(\mu \geq 0 \), in particular for \(\mu = 1 \). Hence \(S \) is convex.

By making use of this theorem it is possible to weaken the hypotheses of Clarkson's theorem slightly and to state it in the following form.

Theorem. A necessary and sufficient condition that a Banach space be equivalent to the space of all continuous functions over a bicompact Hausdorff space \(H \) is that there exist a closed set \(S \) with an extreme point, containing \(\theta \) in its interior, such that all translates of \(S \) form a semi-group and such that the unit sphere in the space is the set \(S \cap (-S) \).

University of Wisconsin