ON A CONJECTURE ON SIMPLE GROUPS

I. N. HERSTEIN

The purpose of this paper is to rephrase a conjecture about simple groups into the language of linear algebra.

Let G be a group of finite order $o(G)$. Then by Γ_p we shall mean the group ring of G over a field of characteristic p (for instance the integers modulo p). We shall denote the radical of Γ_p by N_p. If $p = 0$ or $p \mid o(G)$, then it is known that $N_p = (0)$; and if $p \mid o(G)$, $N_p \neq (0)$.

We now consider the following two assertions:

(A) If G is a simple group of odd order, $o(G)$ is a prime.

(B) If G is a group of odd order $o(G)$, then for some prime p, $p \mid o(G)$, we can find a $g \in G$, $g \neq 1$, such that $g - 1 \in N_p$.

The theorem which we propose to prove is:

Theorem. (A) is equivalent to (B).

1. (B) implies (A).

Definition. $U_p = \{ g \in G \mid g - 1 \in N_p \}$.

Lemma 1. U_p is a normal p-subgroup of G.

Proof. (a) U_p is a subgroup of G, for if $g_1, g_2 \in U_p$, then since N_p is a left-ideal of Γ_p, $g_1(g_2 - 1) + (g_1 - 1) = g_1g_2 - 1 \in N_p$.

(b) U_p is normal, for if $g - 1 \in N_p$, since N_p is a two-sided ideal of Γ_p, $h(g - 1)h^{-1} = hgh^{-1} - 1 \in N_p$ for all $h \in G$.

(c) If $g - 1 \in N_p$, then for some integer s, $(g - 1)^s = 0 = g^s - 1$. So if $g \in U_p$, g is of order p^s for some s. So U_p is a p-group.

Corollary. (B) implies (A).

Proof. By (B), $U_p \neq 1$ for some $p \mid o(G)$. Hence since G is simple, and since U_p is a normal subgroup of G, $U_p = G$. Thus G is of order p^s, and G being simple, $s = 1$. Hence (B) implies (A).

2. (A) implies (B).

Lemma 2. (A) implies that every group of odd order is solvable.

Proof. Let $G = G_1 \supset G_2 \supset \cdots \supset G_r = 1$ be a composition series for G. Since the G_i/G_{i+1} are simple and of odd order, by (A) they must be of prime order; hence the lemma is proved.

Since a solvable group contains a normal p-subgroup [1, p. 25, 1949].
Theorem 20,1 we immediately obtain, using Lemma 2, the following lemma.

Lemma 3. (A) implies that if G is of odd order, then it contains a normal p-subgroup.

For groups of certain orders the N_p can be completely described. This is true for p-groups. If G is of order p^r, then for every $g \in G$, $g - 1 \in N_p$ [2, p. 176, Theorem 1.2 or 3, p. 239]. For our case it is sufficient to use the weaker result:

Lemma 4. If G is of order p^r, then for some $g \neq 1$ in G, $g - 1 \in N_p$.

Proof. Since G is of order p^r, it has a nontrivial center C. Let $g \neq 1$ be in C. Then since $g - 1$ is in the center of Γ_p, and since $(g - 1)^{p^r} = g^{p^r} - 1 = 1 - 1 = 0$, $g - 1 \in N_p$.

Suppose that S is the normal p-subgroup of Lemma 3. An element of the form $g - 1 \in \Gamma_p$ is in N_p if and only if for every irreducible representation ϕ of G, $\phi(g) = 1$. Clifford's theorem [4, p. 534, Theorem 1] reduces the irreducible representations of G to irreducible representations (or into ones fully reducible into irreducible components) of S. For the g of Lemma 4 in S, for every irreducible representation ϕ of S, $\phi(g) = 1$. So by Clifford's theorem, for every irreducible representation ϕ of G, $\phi(g) = 1$. Thus $g - 1 \in N_p$. And so we have shown the following lemma.

Lemma 5. (A) implies (B).

Bibliography

1. A. Speiser, *Gruppen der endlichen Ordnung*.

University of Kansas

1 Numbers in brackets refer to the bibliography at the end of the paper.