On the two-dimensional derivative of a complex function
HTML articles powered by AMS MathViewer
- by Vincent C. Poor
- Proc. Amer. Math. Soc. 1 (1950), 687-693
- DOI: https://doi.org/10.1090/S0002-9939-1950-0037368-2
- PDF | Request permission
References
- Nicolas Ciorănescu, Sur un problème pour les fonctions harmoniques dans un cercle, Bull. École Polytech. Bucharest [Bul. Politechn. Bucureşti] 13 (1942), 26–30 (French). MR 13201
- R. N. Haskell, Areolar monogenic functions, Bull. Amer. Math. Soc. 52 (1946), 332–337. MR 15178, DOI 10.1090/S0002-9904-1946-08576-6
- Maxwell O. Reade, On areolar monogenic functions, Bull. Amer. Math. Soc. 53 (1947), 98–103. MR 19724, DOI 10.1090/S0002-9904-1947-08748-6 D. Pompeiu, Sur une classe de fonctions d’une variable complex, Rend. Circ. Math. Palermo vol. 33 (1912) pp. 108-113. D. Menchoff, Les conditions de monogénéité, Actualités Scientifiques et Industrielle, no. 329, Paris, 1936.
- Vincent C. Poor, Complex functions possessing differentials, Amer. J. Math. 68 (1946), 147–160. MR 14474, DOI 10.2307/2371748 E. Kasner, General theory of polygenic or non-monogenic functions. The derivative congruence of circles, Proc. Nat. Acad. Sci. U.S.A. vol. 14 (1928) pp. 75-83.
- E. F. Beckenbach and Maxwell Reade, Mean-values and harmonic polynomials, Trans. Amer. Math. Soc. 53 (1943), 230–238. MR 7831, DOI 10.1090/S0002-9947-1943-0007831-X
Bibliographic Information
- © Copyright 1950 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 1 (1950), 687-693
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9939-1950-0037368-2
- MathSciNet review: 0037368