NOTE ON PRESERVATION OF MEASURABILITY

ROY B. LEIPNIK

If \(m \) measures \(X \) (that is, \(m \) is a countably subadditive function on subsets of \(X \) to the non-negative reals), and if \(f \) is a function on subsets of \(Y \) to subsets of \(X \), it is natural to inquire into the behavior of the composite function \(n \), where \(n(A) = m(f(A)) \) for each \(A \subseteq Y \). Rather obvious sufficient conditions are given below for \(n \) to measure \(Y \), and for a subset \(A \) of \(Y \) to be \(n \)-measurable.

Several definitions are necessary. A subset \(C \) of \(X \) is called \(m \)-measurable if and only if \(m(T \cap D) = m(T \cap D \cap C) + m(T \cap D \cap (X - C)) \) whenever \(T \subseteq X \) and \(D \subseteq F \). A subset \(B \) of \(Y \) is called a set of \(m \)-continuity-\(f \) if and only if \(m(f(B) \cap f(Y - B)) = 0 \). Suppose henceforth that \((*) \) \(m(f(A) \cap (X - \bigcup_{B \in \mathcal{C}} f(B))) = 0 \) whenever \(A \subseteq Y \) and \(\mathcal{C} \) is a countable covering of \(A \) by subsets of \(Y \).

Theorem 1. If \((*)\), then \(n \) measures \(Y \).

Proof. If \(A \subseteq Y \), and \(\mathcal{C} \) is a countable covering of \(A \) by subsets of \(Y \), then \(n(A) = m(f(A)) = m(f(A) \cap \bigcup_{B \in \mathcal{C}} f(B)) + m(f(A) \cap (X - \bigcup_{B \in \mathcal{C}} f(B))) = m(\bigcup_{B \in \mathcal{C}} f(A) \cap f(B)) \leq m(\bigcup_{B \in \mathcal{C}} m(f(A) \cap f(B)) = \sum_{B \in \mathcal{C}} m(f(A) \cap f(B)), \) so that \(n \) measures \(Y \).

Lemma 1. If \((*)\), \(B \subseteq Y \), and \(C \subseteq Y \), then \(n(B \cap C) \leq m(f(B) \cap f(C)) \).

Proof. Since \(B \cap C \subseteq B \) and \(B \cap C \subseteq C \), \(m(f(B \cap C) \cap (X - f(B) \cap f(C))) = m(f(B \cap C) \cap (X - f(B)) \cap (f(B \cap C) \cap (X - f(C))) \leq m(f(B \cap C) \cap (X - f(B))) + m(f(B \cap C) \cap (X - f(C))) = 0 \). Hence \(n(B \cap C) \leq m(f(B \cap C) \cap (f(B) \cap f(C)) + m(f(B \cap C) \cap (X - f(B) \cap f(C))) \leq m(f(B) \cap f(C)). \)

Theorem 2. If \((*)\), \(A \) is a set of \(m \)-continuity-\(f \), and \(f(A) \) is \(m \)-measurable-range \(f \), then \(A \) is \(n \)-measurable.

Proof. Suppose \(T \subseteq Y \). By Lemma 1, \(n(T \cap A) \leq m(f(T) \cap f(A)) \) and \(n(T \cap (Y - A)) \leq m(f(T) \cap f(Y - A)) \leq m(f(T) \cap f(Y - A) \cap f(A)) + m(f(T) \cap f(Y - A) \cap (X - f(A))) \leq m(f(A) \cap f(Y - A)) + m(f(T) \cap f(A)) + m(f(T) \cap (X - f(A))) = m(f(T)) = n(T) \). Therefore \(n(T \cap A) + n(T \cap (Y - A)) \leq n(T) \).

Reference

Institute for Advanced Study

Received by the editors August 5, 1949.

694