be sufficient to establish that \(\lim_{n \to \infty} f_n(x) = f_0(x) \) at every point \(x \) on \([0, p]\). The theorem follows immediately then from §5.1 and the fact that

\[
f_n(x) = F^{-1}_n \left(\left[x \right]/p + F_n(x - \left[x \right])/p \right), \quad 0 \leq x \leq p, \quad n = 0, 1, \ldots,
\]

Theorem 5 establishes the continuity of \(T \) from \(E_p \) onto \(E_p^* \).

THE Ohio State University

THE NONLINEAR DIFFERENTIAL EQUATION

\[y'' + p(x)y + cy^{-3} = 0 \]

EDMUND PINNEY

Among the limited number of nonlinear differential equations whose exact solutions are known is to be included

(1) \[y''(x) + p(x)y(x) + c/y^3(x) = 0, \]

for \(c \) constant and \(p(x) \) given. The general solution for which \(y(x_0) = y_0 \neq 0, \quad y'(x_0) = y'_0 \) is

(2) \[y(x) = \left[u^2(x) - cW^{-2}v^2(x) \right]^{1/2}, \]

where \(u, v \) form a fundamental set of solutions of the linear equation

(3) \[y''(x) + p(x)y(x) = 0, \]

for which \(u(x_0) = y_0, \quad u'(x_0) = y'_0, \quad v(x_0) = 0, \quad v'(x_0) \neq 0, \) where \(W \) is their Wronskian: \(W = uv' - u'v = \text{const.} \neq 0, \) and where the radical in (2) stands for that root which at \(x_0 \) has the value \(y_0 \).

The proof is very simple and will be omitted.

University of California, Berkeley

1 Done in connection with the Office of Naval Research contract N6 ONR 251 T.O. 2 at Stanford University. I am indebted to Prof. R. E. Langer for a simplification of the result.