The space $H^ p$ with $0 < p < 1$
HTML articles powered by AMS MathViewer
- by Stanley S. Walters
- Proc. Amer. Math. Soc. 1 (1950), 800-805
- DOI: https://doi.org/10.1090/S0002-9939-1950-0039920-7
- PDF | Request permission
References
- Angus E. Taylor, New proofs of some theorems of Hardy by Banach space methods, Math. Mag. 23 (1950), 115–124. MR 33878, DOI 10.2307/3029275
- Mahlon M. Day, The spaces $L^p$ with $0<p<1$, Bull. Amer. Math. Soc. 46 (1940), 816–823. MR 2700, DOI 10.1090/S0002-9904-1940-07308-2 G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934. W. Sierpiński, General topology, Toronto, 1934.
- Freidrich Riesz, Über die Randwerte einer analytischen Funktion, Math. Z. 18 (1923), no. 1, 87–95 (German). MR 1544621, DOI 10.1007/BF01192397 S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
Bibliographic Information
- © Copyright 1950 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 1 (1950), 800-805
- MSC: Primary 46.3X
- DOI: https://doi.org/10.1090/S0002-9939-1950-0039920-7
- MathSciNet review: 0039920