CHOICE FUNCTIONS AND TYCHONOFF’S THEOREM

W. H. GOTTSCALK

The purpose of this note is to point out that the following set-theoretic theorem [R. Rado, Axiomatic treatment of rank in infinite sets, Canadian Journal of Mathematics vol. 1 (1949) pp. 337–343] is an easy consequence of Tychonoff’s theorem that the cartesian product of a family of compact spaces is compact.

Theorem. Let \((X_\alpha | \alpha \in I) \) be a family of finite sets, let \(\mathcal{A} \) be the class of all finite subsets of \(I \), and for each \(\Lambda \in \mathcal{A} \) let \(\phi_\Lambda \) be a choice function of \((X_\alpha | \alpha \in \Lambda) \). Then there exists a choice function \(\phi \) of \((X_\alpha | \alpha \in I) \) such that \(\Lambda \in \mathcal{A} \) implies the existence of \(B \in \mathcal{A} \) such that \(B \supseteq \Lambda \) and \(\alpha \phi = \alpha \phi_B \) \((\alpha \in \Lambda) \).

Proof. For \(\Lambda \in \mathcal{A} \) let \(E_\Lambda \) be the set of all \(\phi \in X = \bigtimes_{\alpha \in I} X_\alpha \) such that \(\alpha \phi = \alpha \phi_B \) \((\alpha \in \Lambda) \) for some \(B \in \mathcal{A} \) with \(B \supseteq \Lambda \). Provide each \(X_\alpha \) \((\alpha \in I) \) with its discrete topology. Since \(X \) is compact and \(\{ E_\Lambda | \Lambda \in \mathcal{A} \} \) is a class of nonvacuous closed subsets of \(X \) with the finite intersection property, there exists \(\phi \in \bigcap_{\Lambda \in \mathcal{A}} E_\Lambda \). The proof is completed.

Corollary. A family of finite sets has a one-to-one choice function if and only if each of its finite subfamilies has a one-to-one choice function. [Cf. C. J. Everett and G. Whaples, Representations of sequences of sets, Amer. J. Math. vol. 71 (1949) pp. 287–293.]

University of Pennsylvania

Presented to the Society, April 22, 1950; received by the editors January 16, 1950.