1. Introduction. The real functions

\[x_j = x_j(u, v) = x_j(z), \quad j = 1, 2, 3, \]

defined and continuous in the unit disc \(D: |z| < 1 \) will be said to define a surface \(S \). In this note we shall study the equation

\[\sum_{j=1}^{3} \left[\int_{D(z, r)} (\xi - z) x_j(\xi) d\xi d\eta \right] = 0, \quad \xi = \xi + i\eta, \]

where \(D(z, r) \) denotes the closed disc in \(D \) with center \(z \) and radius \(r \). The equation (2) may be considered to be a generalization of a familiar equation of Fédéroff [3, p. 512].

If the first partial derivatives of the functions (1) are continuous and satisfy

\[E(u, v) = G(u, v), \quad F(u, v) = 0 \]

in \(D \), where

\[E(u, v) = \sum_{i=1}^{3} \left(\frac{\partial x_i}{\partial u} \right)^2, \quad F(u, v) = \sum_{i=1}^{3} \left(\frac{\partial x_i}{\partial u} \frac{\partial x_i}{\partial v} \right), \]

\[G(u, v) = \sum_{i=1}^{3} \left(\frac{\partial x_i}{\partial v} \right)^2 \]

are the coefficients of the first fundamental differential quadratic form of \(S \), then the parameters \(u, v \) are said to be isothermic parameters, and \(S \) is said to be given in isothermic representation. If (3) holds, then the map of \(D \) on \(S \) is conformal except where \(E = G = 0 \). If \(EG - F^2 \neq 0 \) in \(D \), then we say \(S \) is regular. From (4) it follows that (3) may be written in the form

\[\sum_{j=1}^{3} (\lambda x_j)^2 = 0, \]

where \(\lambda = \partial / \partial u + i\partial / \partial v \) is a differential operator.
If the functions (1) are harmonic and satisfy (5) in \(\mathcal{D} \), then they have been called a *triple of conjugate harmonic functions* [1]. In terms of these triples, a familiar theorem of Weierstrass may be stated as follows.

Theorem 1. A necessary and sufficient condition that the functions (1), defined in \(\mathcal{D} \), be the coordinate functions of a minimal surface in isothermic representation is that they constitute a triple of conjugate harmonic functions.

2. **Principal results.** We shall make use of the following result.

Lemma. If the functions (1) are not identically constant in \(\mathcal{D} \), if they have continuous partial derivatives of the third order in \(\mathcal{D} \), and if they are the coordinate functions of a regular surface \(S \), then a necessary and sufficient condition that they map \(\mathcal{D} \) isothermically on a surface that lies on a sphere \(S \) of finite non-null radius is that

\[
\sum_{j=1}^{3} \left[\iint_{D(z_0,r)} (\xi - z) x_j(\xi) d\xi d\eta \right]^2 = o(r^8)
\]

hold at each point \(z \) in \(\mathcal{D} \), and that

\[
\sum_{j=1}^{3} \left[\iint_{D(z_0,r)} (\xi - z_0) x_j(\xi) d\xi d\eta \right]^2 \neq o(r^8)
\]

hold at some point \(z_0 \) of \(\mathcal{D} \).

Necessity. If the functions (1) map \(\mathcal{D} \) isothermically on a spherical surface \(S \), then it follows from the formulas of Gauss [5, p. 359] that the functions (1) have continuous partial derivatives of all orders in \(\mathcal{D} \). Hence, if we use Taylor expansions, we find

\[
\sum_{j=1}^{3} \left[\iint_{D(z_0,r)} (\xi - z) x_j(\xi) d\xi d\eta \right]^2 = \frac{\pi^2 r^4}{16} \sum_{j=1}^{3} (\lambda x_j)^2 + \frac{\pi^2 r^6}{96} \sum_{j=1}^{3} \lambda x_j \cdot \Delta \lambda x_j
\]

\[
+ \frac{\pi^2 r^4}{9216} \sum_{j=1}^{3} (3\lambda x_j \cdot \Delta^2 \lambda x_j + 4(\Delta \lambda x_j)^2) + o(r^8)
\]

where \(\Delta = \partial^2 / \partial u^2 + \partial^2 / \partial v^2 \) is a differential operator. Moreover it is also known that for this representation of \(S \),

\[
\sum_{j=1}^{3} \lambda x_j \cdot \Delta \lambda x_j = 0
\]
holds throughout \mathcal{O} [5, p. 361]. From (5), (8), and (9) it follows that (6) holds throughout \mathcal{O}.

To show that there exist points at which (7) holds, we shall use a counterpositive proof. Suppose that

$$
\sum_{j=0}^{3} \left[\int_{D(z, r)} (\xi - z) x_j(\xi) d\xi d\eta \right]^2 = o(r^g)
$$

holds at each point of \mathcal{D}. Then it follows from (8) that

$$
\sum_{j=1}^{3} (3\lambda x_j \Delta^2 \lambda x_j + 4(\Delta \lambda x_j)^2) = 0
$$

holds throughout \mathcal{D}. But for S it is known [5, p. 359] that

$$
\sum_{j=1}^{3} \lambda x_j \Delta^2 \lambda x_j = -4\alpha^2 E \lambda^2 E, \quad \sum_{j=1}^{3} (\Delta \lambda x_j)^2 = 4\alpha^2 (\lambda E)^2, \quad \alpha \neq 0,
$$

where α is a real constant. From (11) and (12) we obtain

$$
3E\lambda^4 E - 4(\lambda E)^2 = 0.
$$

Now we want to show the existence of an open subset \mathcal{D}^* of \mathcal{D} where $\lambda E \neq 0$ and $E \neq 0$. First, if E were identically constant in \mathcal{D}, then S would be a plane surface, contrary to hypothesis. Hence there is an open subset \mathcal{D}_1 or \mathcal{D} where $\lambda E \neq 0$. Second, if $E = 0$ throughout \mathcal{D}_1 then $\lambda E = 0$ there. Hence there is an open subset of \mathcal{D}_1 where $\lambda E \neq 0$ and $E \neq 0$, and this subset is denoted by \mathcal{D}^*.

For z in \mathcal{D}^*, (13) yields $3\lambda \log (\lambda E) = 4\lambda (\log E)$, and hence

$$
\lambda E = E^{4/3}\Phi(z),
$$

where

$$
\lambda \Phi(z) = 0.
$$

From the imaginary part of (13) we obtain

$$
3 \frac{E_{uv}}{E_u} du = 4 \frac{E_v}{E} dv, \quad 3 \frac{E_{uv}}{E_v} = 4 \frac{E_u}{E} dv,
$$

and hence

$$
E_u = E^{4/3}\Phi_1(u), \quad E_v = E^{4/3}\Phi_2(v),
$$

where $\Phi_1(u)$ and $\Phi_2(v)$ are real functions of u and v, respectively. From (14), (15), and (16) we obtain

$$
\Phi(z) = \Phi_1(u) + i\Phi_2(v),
$$
which, by (15), is an analytic function for \(z \) in \(\mathcal{D}^* \). If we use the Cauchy-Riemann equations for (17), then we find

\[
\Phi_1(u) = 2a_0u + a_1, \quad \Phi_2(v) = 2a_0v + a_2,
\]

where \(a_0, a_1, a_2 \) are real constants. Therefore (14) yields

\[
\frac{E_u}{E_{1/3}} du = (2a_0u + a_1)du, \quad \frac{E_v}{E_{1/3}} dv = (2a_0v + a_2)dv,
\]

from which we obtain

\[
E = -\frac{27}{[a_0(u^2 + v^2) + a_1u + a_2v + a_3]^3},
\]

where \(a_3 \) is another real constant. But it is well known that the Gaussian curvature of \(S \) is given by [2]

\[
K = -\frac{1}{2E} \Delta (\log E).
\]

From (18) and (19), we find

\[
K = \frac{a_1^2 + a_2^2 - 4a_0a_3}{18} \left[a_0(u^2 + v^2) + a_1u + a_2v + a_3 \right],
\]

which holds throughout \(\mathcal{D}^* \). But \(S \) is on the sphere \(\mathbb{S} \), so that (20) must be identically constant in \(\mathcal{D}^* \). Hence \(a_0 = a_1 = a_2 = 0 \) and therefore \(K = 0 \); therefore \(\mathcal{D}^* \) is mapped on a spherical surface with vanishing curvature. But \(\mathbb{S} \) has finite radius, so that we have been led to a contradiction by assuming (10) to hold throughout \(\mathcal{D} \). Hence (7) holds for at least one point of, and hence in an open subset of, \(\mathcal{D} \).

Sufficiency. By the use of finite Taylor expansions we obtain

\[
\sum_{j=1}^{3} \left[\int_{D(x,r)} (\xi - x_j) \frac{d\xi d\eta}{D(x,r)} \right]^2 = \frac{\pi^2 r^4}{16} \sum_{j=1}^{3} (\lambda x_j)^2 + \frac{\pi^2 r^6}{96} \sum_{j=1}^{3} \lambda x_j \Delta \lambda x_j + o(r^6).
\]

From (6) and (21) we obtain (5) and (9). If we operate on (5) with the operator \(\lambda \), we obtain

\[
\sum_{j=1}^{3} \lambda x_j \Delta x_j = 0.
\]

Operating on (22) with \(\lambda \), and applying (9) to the result, we obtain
\begin{align*}
\sum_{j=1}^{3} \lambda^2 x_j^2 \Delta x_j &= 0. \\
\text{There are four real, linear, homogeneous equations in } \Delta x_j, j=1, 2, 3, \\
\text{implied by (22) and (23):} & \sum_{j=1}^{3} x_{j,u} \Delta x_j = 0, \\
& \sum_{j=1}^{3} x_{j,v} \Delta x_j = 0, \\
& \sum_{j=1}^{3} (x_{j,uu} - x_{j,uv}) \Delta x_j = 0, \\
& \sum_{j=1}^{3} x_{j,uv} \Delta x_j = 0. \\
\text{One solution to the system (24) is} & \Delta x_j = 0, \quad j = 1, 2, 3.
\end{align*}

In this case the functions (1) are harmonic in } \mathcal{D}, \text{ and hence (8) yields (10) for each } D(z, r) \text{ in } \mathcal{D}. \text{ This contradicts (7). Hence the set } \mathcal{D}^{**},
\begin{align*}
\mathcal{D}^{**} &= \left\{ z \in \mathcal{D}; \sum_{j=1}^{3} (\Delta x_j)^2 \neq 0; (24) \text{ holds} \right\},
\end{align*}

is a non-null open subset of } \mathcal{D}.

For } z \text{ in } \mathcal{D}^{**}, \text{ the system (24) has a nontrivial solution. Therefore the rank of the matrix}
\begin{align*}
\begin{vmatrix}
x_{1,u} & x_{2,u} & x_{3,u} \\
x_{1,v} & x_{2,v} & x_{3,v} \\
x_{1,uu} - x_{1,uv} & x_{2,uu} - x_{2,uv} & x_{3,uu} - x_{3,uv} \\
x_{1,uv} & x_{2,uv} & x_{3,uv}
\end{vmatrix}
\end{align*}
is less than three. Hence it follows from the definitions of the coefficients } e, f, g, \text{ of the second fundamental differential quadratic form of } S, \text{ that}
\begin{align*}
e = g, \quad f = 0,
\end{align*}
holds in } \mathcal{D}^{**}. \text{ Hence it follows from (5) and (26) that the functions (1) map } \mathcal{D}^{**} \text{ isothermically on a spherical surface } S^{**}. \text{ If } S^{**} \text{ were either a plane or a point, then (25) would hold in } \mathcal{D}^{**}; \text{ hence } S^{**} \text{ lies on a sphere of finite non-null radius.}

Now consider the subset } \mathcal{D} - \mathcal{D}^{**} \text{ of } \mathcal{D}, \text{ and let } z_0 = \alpha + i\beta \text{ be a point of } \mathcal{D} - \mathcal{D}^{**}. \text{ If } z_0 \text{ is a frontier point of } \mathcal{D} - \mathcal{D}^{**}, \text{ then a simple continuity argument shows that the functions (1) map } z_0 \text{ on the boundary of } S^{**}, \text{ lying on the same sphere containing } S^{**}; \text{ moreover, since } S \text{ is regular, we know that } E(\alpha, \beta) \neq 0, \text{ so that the con-}
tinuity of the Gaussian curvature shows that $K(u_0, v_0) > 0$. Now if $D - D^{**}$ has a component C with non-null interior, then the functions (1) map this interior on a minimal surface \mathcal{M}, such that the frontier of C is mapped on the boundary of \mathcal{M}. Since a minimal surface is a surface of nonpositive Gaussian curvature, it follows by a continuity argument again that the Gaussian curvature at points of the boundary of \mathcal{M} satisfy $K(u_0, v_0) \leq 0$. But at the beginning of this paragraph it was pointed out that $K(u_0, v_0) > 0$ at the points corresponding to frontier points of $D - D^{**}$. Since S^{**} and \mathcal{M} are merely parts of the regular surface S, it follows from this contradiction that the set $D - D^{**}$ has no component with a non-null interior, and hence all points $D - D^{**}$ are mapped on the boundary of S^{**}. Therefore the functions (1) map all of D isothermically on a spherical surface, lying on a sphere with finite non-null radius.

The following result does not appear to demand the regularity of the surfaces involved.

Theorem 2. If the functions (1) have continuous partial derivatives of the third order in D, then a necessary and sufficient condition that they be the coordinate functions of a minimal surface in isothermic representation is that

\[
\sum_{j=1}^{3} \left[\int_{D(z, r)} (\xi - z) x_j(\xi) d\xi d\eta \right]^2 = 0
\]

hold for each $D(z, r)$ in D.

Necessity. If the functions (1) map D isothermically on a minimal surface, then it follows from Theorem 1 that (5) and (25) hold, and hence, by the use of Fourier expansions, it follows that (27) holds for each $D(z, r)$ in D.

Sufficiency. If (27) holds, then (5), (22), and (23) follow from (21). Hence we obtain the system (24). Now consider the set D^{**} defined in the proof of the lemma. As in the proof, the functions (1) map D^{**} isothermically on a surface S^{**} that lies on a sphere with finite non-null radius. Hence the functions (1) are analytic in the real variables u, v [5, p. 358]. Therefore we may use (8) to obtain (11). Hence we find that (18) holds in D^{**}, and consequently, as in the proof of the necessity part of the lemma, the Gaussian curvature of S^{**} is identically zero. Therefore the spherical surface S^{**} is a plane surface, so that (25) holds in D^{**}. From this contradiction we conclude that the open set D^{**} contains no interior points, hence is a null set. Therefore (5) and (25) hold throughout D, and hence S is a minimal surface given in isothermic representation by the functions (1).
Corollary. If the functions (1) have continuous partial derivatives of the third order in D, then a necessary and sufficient condition that they be the coordinate functions of a minimal surface in isothermic representation is that (10) hold at each point of D.

3. Characterization of plane isothermic maps. We take this occasion to offer a simplification of a proof of a characterization of plane isothermic maps, a result which may be considered to be a generalization to space of the Cauchy and Morera theorems. The simplification consists in deriving some fundamental identities without the use of conformal mapping and schlicht functions [5, pp. 368–370].

Theorem 3. If the functions (1) have continuous partial derivatives of the third order in D, then a necessary and sufficient condition that they be the coordinate functions of a plane surface in isothermic representation is that

$$
\sum_{j=1}^{3} \left[\int_{\gamma} x_j(\xi) d\xi \right]^2 = 0
$$

hold for each closed rectifiable Jordan curve γ in D.

Proof. In the earlier proof it was shown that (28) is a necessary condition that the functions (1) map D isothermically on a plane surface. It was also shown that if (28) holds for all closed rectifiable Jordan curves γ in D, then the functions (1) constitute a triple of conjugate harmonic functions in D and hence may be written in the form

$$
x_j(z) = F_j(z) + \overline{F_j(z)}, \quad j = 1, 2, 3,
$$

where $F_j(z)$ is analytic in D and where $\overline{F_j(z)}$ is its complex conjugate.

Now let $z = u + iv$ be an arbitrary point in D, and write

$$
F_j(\xi) = \sum_{n=0}^{\infty} a_{j,n} (\xi - z)^n, \quad \overline{F_j(\xi)} = \sum_{n=0}^{\infty} \bar{a}_{j,n} (\overline{\xi - z})^n.
$$

Now consider the family of triangles $\gamma(r, \alpha)$, with vertices $z, z + re^{i\alpha}, z + re^{-i\alpha}$. Then a direct computation, using (28) and (29), yields

$$
\sum_{j=1}^{3} \left[\int_{\gamma(r, \alpha)} x_j(\xi) d\xi \right]^2
$$

$$
= - 4 \cos^2 \alpha \sum_{n=0}^{\infty} r^{n+1} \sum_{k=0}^{n} \sin k\alpha \sin (n - k)\alpha \left[\sum_{j=1}^{3} d_{j,k} d_{j,n-k} \right] = 0,
$$

which must hold for $\gamma(r, \alpha)$ in D. Since (30) holds for all sufficiently
small \(r \), it follows that

\[
\sum_{k=0}^{n} \sin k\alpha \sin (n - k)\alpha \left[\sum_{i=1}^{3} \bar{a}_{i,k} \bar{a}_{i,n-k} \right] = 0, \quad n \geq 0,
\]

holds for all \(\alpha \). From (31) we obtain

\[
\sum_{k=1}^{n-1} \left[\cos (n - 2k)\alpha - \cos n\alpha \right] \left[\sum_{i=1}^{3} \bar{a}_{i,k} \bar{a}_{i,n-k} \right] = 0, \quad n \geq 2,
\]

which must hold for all \(\alpha \). Now let \(p \) be a fixed integer, \(1 \leq p \leq n - 1 \). If we multiply both members of (32) by \(\cos(n - 2p)\alpha \) and then integrate the result over the interval \((0, 2\pi)\), we obtain

\[
\bar{a}_{n-p}, \bar{a}_{n+p} = 0, \quad 1 \leq p \leq n - 1, \quad n \geq 2.
\]

Now (33) are the identities that had to be proved in order to prove that the functions (1) map \(\mathcal{D} \) isothermically on a plane surface.

4. Conclusion. The results contained in this note are similar to those obtained before \([5]\). The one outstanding point of difference is the lack of a characterization of isothermic plane maps by means of an equation similar to (5). It would be interesting to obtain such a characterization.

Bibliography

University of Michigan