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1. Introduction. The theory of projectivity1 has been considerably

developed in the case of complemented modular lattices, and has been

used in arbitrary modular lattices in connection with the Jordan-

Holder theory and allied topics. The present note is devoted to the

theory of projectivity in modular lattices with especial attention to

the development of two canonical forms for projectivities. The first

of these is given in §3 (Theorem A) and the second in §4. The main

tool in the derivation of these forms is exploitation of the concept of

projective root defined in §2.

2. Definitions and notations.2 A quotient in a modular lattice 2 is

a pair of elements x and y in 2 such that3 xDy and is denoted by the

symbol x/y. Two quotients a/b and c/d are said to be transposes if

either a = b\Jc and d = bi\c or c = aVJd and b = ai\d. Two quotients

a/b and c/d are said to be projective if there exists a finite sequence

a/b, ai/bi, • • • , c/d in which any two consecutive quotients are

transposes. A quotient a/b is called prime if there exists no element c

in 2 such that cOO&.
Let 2 be a modular lattice of finite dimension / and let

?o= {0=z>oCz'iC • • • Cf¡ = 7} be a maximal chain in 2. Suppose

that the I prime quotients z><_i/z>¿ are separated into r equivalence

classes under the relation of projectivity, and let h, • • • , lr be the

orders of these classes. The partition Z = /i+ • ■ • +/r describes (al-

though is far from characterizing) the projective structure in 2, and

is, in particular, independent of the choice of the chain §0- We call

the unordered set of natural numbers h, • • ■ , lr the projective struc-

ture constants (p.s.c.) of 2. A necessary and sufficient condition that 2

be distributive is that r = l. In the other extreme case r = 1, 2 is said to

be simple*

Any /-dimensional sublattice 2' of 2 will have p.s.c. l{, ■ ■ ■ , l'r>

Presented to the Society, September 2, 1949; received by the editors December 9,

1949.
1 See Garrett Birkhoff, Lattice theory, rev. ed., Amer. Math. Soc. Colloquium Pub-

lications, vol. 25, New York, 1949, p. 72 and p. 118.

2 Cf. Birkhoff, ibid., especially Chapter V. All of the concepts in this section are

found in Birkhoff. The terminology "projective root" is new.

3 Read "x^y" as "x properly contains y."

4 Birkhoff, ibid., p. 78.
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with r'^r such that the partition l{, • • • , // is a refinement of the

partition h, • • • , lr- (This follows from the fact that projectivity in

a sublattice implies projectivity in the overlattice whereas the re-

verse implication is not true.)

One measure of the complexity of a modular lattice is how much it

lacks being distributive. Each triple of elements in 8 for which the

distributive law does not hold generates a lattice which has a five

element sublattice ty = \r, s, t, u, w] in which r is the meet and w is

the join of each pair selected from s, t, u. We shall call such a five

element lattice a protective root (p.r.) and shall use the notation

ty = [r; s, t, u; w] to indicate that $ is a projective root. If any one

(and therefore all) of the six quotients s/r, t/r, u/r, w/s, w/t, w/u is

prime in 8, we say that $ is a prime projective root (p.p.r.) in 8.

It is easily seen (we omit the proof) that if 8 contains any projec-

tive root, then it contains a prime projective root. Indeed, if ^5

= [r;s,t,u;w]isa p.r. with dimension s/r = k, then 8 contains k p.p.r.'s

$.= [w, Si, t,, Ui\ Wi], i=\, ■ • • , k, such that r=ru Wi = r2, • • • ,

Wk-i = rk, wk = w.

3. First normal form for a projectivity. So far as the definition of

projectivity is concerned the successive quotients involved may

wander all over the lattice according to no particular pattern. Our

first step in the study of projectivities is, accordingly, the derivation

of a normal form. This first normal form is without reference to the

fixed chain 8o and is valid for any modular lattice 8 in which all

bounded chains are finite. In the next section a second normal form

is set up which is adapted to the chain 8o and in which almost all of

the quotients used belong to a preassigned finite set which is defined

in terms of 8o.

Theorem A. Let a/b be projective to c/d, both quotients being prime

in 8. Then there exists a sequence of transposes a/b = x0/yo, Xi/yi, • • • ,

xk/yk = c/d such that

(i) No three consecutive xt- ior y¡) form a chain.

(ii) For k>2 and for i = 1, • • • , k — 1 either (a) y< = yi-i^y.+i or

(b) Xi = Xi-iSJxi+i. Moreover, in case (a) we have ^i=[yi; x,-, x,+i

r^yi-i, Xi-iC\yi+i; 3c¡_in%i] and in case (b) we have $,= [y,-_i

\Jyi+i; yi, y¿_iUx,+i, yj+iWxj_i; x,] as a prime projective root.

(iii) For k = 2 there may or may not be a prime projective root re-

lated to the projectivity.

Proof. If x/x', y/y', z/z' is a sequence of transposes for which

xDyDz, then x'U2 = (x'Uy')Us = x'U(y'Uz) =x'Uy = x. Similarly

x'i\z=z'. Hence, the middle quotient can be dropped from the se-



148 R. M. THRALL [February

quence and still leave a projectivity. By repeated applications of this

process or dropping middle quotients we may assume that a/b

= x0/yo, • • -, xk/yk = c/d is a sequence of transposes which satisfies (i).

For each i (0<i<k) we must have either XjCxi-ifix.+i or x,Qx,_i

Wx,+i. The two possibilities are dual, so it is sufficient to treat only

one, say the first. Then we have xAJy,-+1 = x,-+i, XjUy<_i = x<_i,

x,r^yj_i = xi/r>\yi+i=y<. Let x/ = x,-_iP\xj+i and let yi =yi^iC\yi+i.

Then Xii\yi = XiPiy^iPiy.+i = y,-, and xJJyi =xiW(y,-_inyi+i)Çx/.

We consider two cases (A) x.Wy/ =x/ and (B) x,Uy/ Cx/.

Case (A). Set x" = x¿_iWxi+i and y" = y¿_i Wyi+1. We shall show

that the quotient x/' /yi' is a transpose of both x,_i/y,_i and x,+i/y,+i,

and hence can be substituted for the quotient x¿/yí in the given se-

quence from a/b to c/d. If l<t<J-l, we can then delete the quo-

tients Xj_i/yj_i and x,-+i/y,-+i from this altered sequence and have left

a sequence of two less quotients connecting a/b to c/d. If either 1<»

or i < k — 1, one of these deletions can still be made. At least one of

these inequalities will always hold unless l—i = k — l, and therefore

k = 2, in which case there is nothing to be proved. The hypothesis of

case (A) has as immediate consequence that x/ /yi is a transpose

of both x<_i/y,-_i and x,+i/y,+i. Our desired conclusion for x/' /yi' is

accordingly a consequence of the following lemma.

Lemma A. Let a/b and c/d be prime quotients in a modular lattice 2.

Then both of these quotients are transposes of ai\c/dC\b if and only if

they are both transposes of a\Jc/b\Jd.

Proof. "Only if." By hypothesis a = b\J(a(~\c) =af~\(bVJc) and

hence b\Jc = aVJc. Similarly, aSJd = aV)c. Moreover, bf\d = br\(ar\c)

= br\c, and similarly br\d = a(~\d. Now, af~\(bVJd) = &U(aHd)
= b\J(bC\d)=b, and a\J(b\Jd)=a\Jd = a\Jc. Similarly aKJc/bKJd is
a transpose of c/d. The "if" part of the lemma follows from duality.

Case (B). We have x/DxAJy/Dy,', and so5 dim x//y/^2. On

the other hand dim x,'/yi =2 since dim x,-_i/y¿_i = dim x<+i/y,+1 = l.

Hence, dim x/ /yi = 2 and the quotients x/ /x^Jyi and xJUyi /yi are

both prime. From this it follows readily that [yi ; y.-i^x/, x.Uy,',

yi+if\xi ; xi ] is a p.p.r. Moreover, we can replace x,/y¿ by x¿Wy/ /yi

in the given sequence of transposes and obtain a new sequence which

still satisfies condition (i) and which satisfies condition (iia) at the

ith position.

The case where x,Qxí_iUx,+i is dual to the one just treated and

leads, in case k>2, either to a shorter sequence of transposes or to a

6 The dimension of a quotient a/b is the dimension of the interval [b, a]; cf.

Birkhoff, ibid., p. 11.
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sequence which satisfies condition (i) and which satisfies condition

(iib) at the ith position.

The theorem now follows immediately. The above proof also estab-

lishes the following corollary.

Corollary A. If k is the shortest length of any sequence of transposes

leading from a/b to c/d, then there exists a sequence of transposes of

length k which satisfies all of the properties of the sequence of Theorem A.

4. The second normal form for a projectivity. The first normal form

shows the importance of projective roots in the projective structure of

a modular lattice. However, it sheds no direct light on the number of

distinct prime projective roots that are necessary to set up projec-

tivities between all pairs of prime quotients that are projective in a

finite-dimensional modular lattice. We now describe a second normal

form which is adapted to any maximal chain 80 in 8; two preliminary

concepts are needed.

Let a/b be any prime quotient in 8 and consider the distributive

sublattice6 © of 8 generated by 80 and a/b. In 3) the quotient a/b will

be projective to exactly one of the quotients »</»<_i, i = l, • • • , I.

If this quotient is »y/»/-i, we say that j=jia/b) is the index of a/b in

8 relative to 8o- It may happen that a/b is a transpose of Vj/v¡-i. If

not, then either one of the quotients v^Ja/vj^Jb and VjC\a/vi-iC\b

can serve as the intermediate quotient to a/b and Vj/vj-i in a sequence

of transposes of length k = 2, and any other sequence of transposes

from a/b to Vj/vj-i will have length greater than 2.

To prove the above statements we consider the two chains

0=ionaCs1riaC • • • Ç.vir\ai = a=Vo^Ja)

QviVJaÇZ • • • Qvi^Ja = I,

0 = v0nbQvinbQ ■ ■ ■ Qvir\bi = b = v0'Ub)

Ç>AJ6Ç • • • c>AJ6 = J.

In each of these chains there must be exactly I proper inclusions. Since

dim a/6 = l, there must be exactly one more proper inclusion in the

subchain Voi^aQ ■ • ■ CZv¡í^a than in the subchain v0r\bQ • • • Qv¡

r\b. Hence there is at least one index j for which Vji^a^Vj-iCSa

whereas VjC\b = Vj-ir\b. Moreover, since v¡C\a'2>Vj-ir\a'Dvj-\r\b

=VjP\b and dim VjH\a/VjT\b£l we conclude that Vj-ii\a = Vj-if~\b

= VjC\b. Now, a/b, Vjr\a/Vj(~\bi=Vjr\a/vj-ir\a), Vj/vj-i is a sequence

» Cf. Birkhoff, ibid., p. 27.
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of transposes which shows that j is the index of the quotient a/b.

The remaining statements follow from Lemma A.

The above argument also provides two new characterizations for

the index j(a/b). For we see that if vj(~\aZ)vjC\b =vj-i(~\a, then

j=j(a/b). Alternatively, j(a/b) is the smallest index j for which

v¡r\a"Z)Vjr\b.
We shall call a sequence of transposes from a prime quotient a/b

to Vj/Vf-i where j =j(a/b) a stem if it has minimal length k. According

to the above paragraph we always have k = 1 or k = 2 for stems ; if

k = l there is just one stem belonging to a/b and if k = 2 there are

exactly two stems belonging to a/b. The reverse sequence of a stem

is called a reverse stem.

A p.p.r. ty = [r; s, t, u; w] is said to be normal of type i, j with re-

spect to the chain 80 if 0</»<-i, w/t, u/r, v¡[v¡-i is a sequence of trans-

poses, and if VíC.sQvj-1.

Lemma B. Let a/b and c/d be prime quotients in 2 with indices j and i

respectively, and let c = a\Jd, b = af\d. Then i^j, and if i<j there

exists a normal p.p.r. of type i, j in 2-

Proof. We have v ¡r\c"3v j(~\d. If equality holds, then (v}r\d)r\a

= (vji~\c)r\a or v¡r\b=v¡r\a, which contradicts the hypothesis that

j=j(a/b). Hence, the inclusion is proper and so by the second alterna-

tive characterization of index we see that j^i=j(c/d).

Now suppose that i<j. Then the sequence of transposes Vj/v^-i,

Vjí~\a/vj-ir\b, a/b, c/d, ViVJc/Vi-iUd, »</»<_i can be shortened to one

of length 3 by deletion of a/b and c/d. Since i <j and the Vh form a

chain, we cannot have any sequence of less than three transposes

leading from v¡/v¡-i to »</»*_!. Hence, we can apply Theorem A and

Corollary A to get a sequence of transposes Vj/vj^i = x0/yo, Xi/yi,

x2/y2, Xs/ys = Vi/vi-i such that x2 = XiWx3, yi=yoHy2 and with the

p.p.r.'s ^1= [yi; xt, yo<~\x2, xoC\y2; x0nx2] and %= [yiVJy3; y2, XiWy3,

x3Wyi; x2]. (The fact that case (A) applies for ^i and case (B) for

ty2 follows from the form of the first sequence of length 3 obtained

above connecting Vj/v¡-i to t>,/i\_i.)

Now, since X(Qy<OxOy3 we have xonx2 = x0n(xiWx3) = XiWx3

= x2, and similarly yiWy3 = yi. From these equalities we get Xo2*2

Dy2 and yîQyiQxi, and hence, xüC\y2 = y2 and xiUy3 = xi. Finally,

x3Uy1 = x3W(y0ny2) = (x3Wy2)ny0 = x2r^yo. This shows that ^ß

"■ [yol yi^7x3, y2, X\\ x2] is normal and of type i, j, which com-

pletes the proof of the lemma.

Let %, ■ • • , tym (where <$h= [rh; sh, th, uh; wh],h = l, ■ ■ ■ , m) be

p.p.r.'s each normal with respect to 8o- A sequence of transposes
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Xo/yo, Xi/yi, • • • , Xik/yzk is said to be canonical with respect to

$1, • • • i ?m if each of the quotients x0/yo, x3/y3, • • • , x3k/yik be-

longs to 80, and if each pair x3s+i/y3s+i, x3s+2/y3s+2, s = 0, • • • , k — 1

is of one of the forms wh/tn, uh/rh or Uy,/rn, wh/th for suitable h = his),

and if no quotient appears twice in the sequence.

Lemma C. There exist l — r distinct prime projective roots tyh

= [rn; sht th, uh; Wh], h = l, • • • , l — r, each normal with respect to 80,

and such that the sublattice 8' of 8 generated by 80 and $1, • ■ • , $¡_r

has the same projective structure constants as 8. Moreover, if p¿/z>,-i is

projective to Vj/v^i in 8 and i ¿¿j, then there exists a unique sequence of

transposes canonical with respect to tyi, • • • , ^3¡_r, which establishes

this projectivity.

Proof. If 8 is distributive, there is nothing to prove. If 8 is not

distributive, then we have at least two distinct quotients p,/»,_i and

Vj/vj-i which are projective in 8. Let Vi/vi-i = x0/yo, Xi/yu • ■ ■ , xk/yk

= v¡/vj-i be any sequence of transposes which establishes this projec-

tivity. Let Xh/yh be the first quotient in this sequence whose index is

not equal to i. Then, according to Lemma B, 8 contains a normal

p.p.r. ^Ji of type ii, ji where ii = minimum (¿, jixh/yh)) and ji = maxi-

mum ii,jixh/yh)).

We now take as an induction hypothesis that for some h<l — r we

have found h p.p.r.'s $!,•••,$* with ^5m normal of type im, jm,

m = l, ■ • ■ , h, such that each of the graphs Gm described below is a

forest (that is, contains no cycle). Each graph Gm has the I vertices

Qi, • ■ ■ , Qh and we say that Qi is associated with the quotient

Vi/vi-i. In Go there are no edges, and Gm (for w>0) has the m edges

iQh< (?ii)> • • " . iQim> Qim)- Clearly, Gk has exactly I—h connected

subgraphs. Now, since l — h>r, there must be some pair of quotients

Vi/vi-i and Vj/vj-i projective in 8 and such that Qi and Q¡ lie in

distinct connected subgraphs of Gk- Let i\/i>,_i = x0/yo, Xi/yi, ■ • • ,

xk/yk = Vj/vj-i be any sequence of transposes establishing the projec-

tivity of the given quotients. Then, since the indices of xo/yo and of

Xk/yk give corresponding vertices Qi and Q¡ belonging to distinct con-

nected subgraphs of Gh, there must be some consecutive pair of

quotients in the given sequence with indices i' and j' such that Qi-

and Qy lie in distinct connected subgraphs of Gn. Now apply

Lemma B, and we get a p.p.r. fyh+i of type 4+i, jh+i where in+i is the

minimum and jh+i is the maximum of the two integers i' and /.

Completing this induction argument we arrive at the following posi-

tion. We have l—r p.p.r.'s tyi, ■ • • , ^3j_rand a corresponding graph

Gi-r-Gi-r is a forest with exactly r connected subgraphs. Moreover,
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two quotients Ví/ví-i and v¡/v¡-i are projective in 2 if and only if the

corresponding vertices Q{ and Q¡ belong to a connected subgraph of

Gj_r; hence, the sublattice 2' of 2 generated by So and the tyh has the

same p.s.c. as 2. With the directed edge (Qih, Qjh) of the graph we

associate the sequence of transposes vih/vih^i, wh/th, un/tn, Vjjvjh-i.

We associate the reverse sequence with the same edge oppositely

directed. By fitting such sequences together we associate with any

connected path in G¡_r without any repeated vertex and leading from

a vertex Qi to a vertex Q¡ a sequence of transposes canonical with re-

spect to $i, • • • , tyi-r and leading from p</i><-i to P//»¿_i. Conversely,

with any canonical sequence of transposes we may associate a con-

nected path in Gj_r leading from Q{ to Q¡. Since the graph Gj_r is a

forest, there is at most one connected path leading from Qi to Q¡

provided no vertex is used twice; this establishes the uniqueness part

of the lemma, and completes the proof.

As a consequence of Lemma C we see that if two prime quotients

a/b and c/d are projective in 2, there exists a sequence of the form

stem—canonical sequence—reverse stem which establishes this pro-

jectivity. The canonical sequence used is uniquely defined by the

given quotients (more precisely by the indices of a/b and c/d), and

for each of the stem and of the reverse stem there are at most two

choices. A sequence of the form stem—canonical sequence—reverse

stem is said to be in the second normal form for a projectivity.

As compared with the first normal form the second one may be

much longer and need not satisfy the conditions of the first normal

form. However, in the second form there is an economy in the total

number of prime projective roots used, and it is essentially uniquely

determined by its initial and terminal quotients. The second normal

form is expected to be of especial importance in the study of sub-

lattices of the lattice of all subspaces of a finite-dimensional vector

space.
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