ON A THEOREM OF R. MOUFANG

R. H. BRÜCK

A loop is a system with a binary operation, possessing a unit 1, and such that any two of the elements in the equation \(xy = z \) uniquely determine the third. A Moufang loop [1, chap. 2] may be characterized by the identity \(xy \cdot zx = (x \cdot yz)x \). The following theorem is due to R. Moufang [2].

Theorem. If \(ab \cdot c = a \cdot bc \) for three elements \(a, b, c \) of a Moufang loop, the subloop generated by them is associative.

We give a particularly simple proof for the commutative case. (This proof, although complete in itself, stems from the theory of autotopisms introduced in [1], which will be applied elsewhere to the noncommutative case.) Henceforth let \(G \) be a commutative Moufang loop. For each \(x \) in \(G \) define the permutation \(R(x) \) by \(yRix) = yx \). The defining relation can be written in the two forms

\[
(1) \quad yx \cdot zx = (yz \cdot x)x, \quad yR(x) \cdot zR(x) = (yz)R(x)^2.
\]

If we take \(z = x \) in (1), \(yx \cdot xx = (yx \cdot x)x \). If we replace \(yx \) by \(y \),

\[
(2) \quad y \cdot xx = yx \cdot x.
\]

If \(x^{-1} \) is defined by \(xx^{-1} = 1 \) (so that \((x^{-1})^{-1} = x \)), (1) with \(z = x^{-1} \) gives

\[
yx = (yx^{-1} \cdot x)x, \quad y = yx^{-1} \cdot x \quad \text{and}
\]

\[
(3) \quad yx \cdot x^{-1} = y, \quad R(x)^{-1} = R(x^{-1}).
\]

Let \(\mathcal{S} \) be the group generated by the \(R(x) \), and consider its elements \(S = R(a_1)R(a_2) \cdots R(a_n), \quad T = R(a_1)^2R(a_2)^2 \cdots R(a_n)^2 \). By (3), every element of \(\mathcal{S} \) can be put in the form \(S \). By repeated application of (1), \(yS \cdot zS = (yz)T \). If the \(a_i \) are chosen so that \(1S = 1 \), let \(y = 1 \) and have \(S = T \). Thus the subgroup \(\mathcal{S} \) of \(\mathcal{S} \), consisting of the \(S \) with \(1S = 1 \), is a group of automorphisms of \(G \). We use this “remark” several times; its value lies in the readily verified fact that the elements left invariant by a set of automorphisms of a loop form a subloop.

Let \(H \) be the subloop of the theorem and \(H_1 \) the subset consisting of the \(z \) in \(H \) such that \(ab \cdot z = a \cdot bz \). Equivalently, \(zS = z \) where \(S = R(ab)R(a^{-1})R(b^{-1}) \). By the remark, \(S \) induces an automorphism of \(H \), so \(H_1 \) is a subloop of \(H \). Moreover \(H_1 \) contains \(c \), by hypothesis,

Received by the editors December 1, 1949.

\footnote{Numbers in brackets refer to the references cited at the end of the paper.}
and a, b, by (2). Hence $H_1 = H$.

In particular, therefore, $ab \cdot c^{-1} = a \cdot bc^{-1}$. If we apply (3) and (1) in turn, $ab = (a \cdot bc^{-1})c$, $ab \cdot c = ac \cdot b$. It is now easy to see that the relation $ab \cdot c = a \cdot bc$ remains true under all permutations of a, b, c. We deduce among other things that $ac \cdot z = a \cdot cz$ for all z in H.

Let H_2 be the subset consisting of the y in H such that $ay \cdot z = a \cdot yz$ for all z in H. By the remark, H_2 is a subloop of H, containing a, by (2), and b, c, by the above proofs. Hence $H_2 = H$.

A similar argument now gives $xy \cdot z = x \cdot yz$ for all x, y, z in H.

REFERENCES

University of Wisconsin