Completely reducible Lie algebras of linear transformations
HTML articles powered by AMS MathViewer
- by Nathan Jacobson
- Proc. Amer. Math. Soc. 2 (1951), 105-113
- DOI: https://doi.org/10.1090/S0002-9939-1951-0049882-5
- PDF | Request permission
References
- A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. (2) 48 (1947), 546–567. MR 21546, DOI 10.2307/1969128 E. Cartan, Thèse, Paris, 1894.
- Claude Chevalley, A new kind of relationship between matrices, Amer. J. Math. 65 (1943), 521–531. MR 9604, DOI 10.2307/2371863
- Claude Chevalley and Hsio-Fu Tuan, On algebraic Lie algebras, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 195–196. MR 12279, DOI 10.1073/pnas.31.7.195
- Morikuni Gotô, On algebraic Lie algebras, J. Math. Soc. Japan 1 (1948), 29–45. MR 28306, DOI 10.2969/jmsj/00110029
- Nathan Jacobson, Rational methods in the theory of Lie algebras, Ann. of Math. (2) 36 (1935), no. 4, 875–881. MR 1503258, DOI 10.2307/1968593
- Nathan Jacobson, Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149–170. MR 28305, DOI 10.2307/2372102
- N. Jacobson, Derivation algebras and multiplication algebras of semi-simple Jordan algebras, Ann. of Math. (2) 50 (1949), 866–874. MR 30943, DOI 10.2307/1969583
- A. Malcev, On solvable Lie algebras, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 9 (1945), 329–356 (Russian, with English summary). MR 0022217
- V. V. Morozov, On a nilpotent element in a semi-simple Lie algebra, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 83–86. MR 0007750
- W. W. Morosov, On the centralizer of a semi-simple subalgebra of a semi-simple Lie algebra, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 259–261. MR 0007751
Bibliographic Information
- © Copyright 1951 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 2 (1951), 105-113
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9939-1951-0049882-5
- MathSciNet review: 0049882