LINEAR INDEPENDENCE IN ABELIAN GROUPS

MARY-ELIZABETH HAMSTROM

Alexandroff and Hopf\(^1\) offer a proof of the following theorem.\(^2\) If \(U\) is a sub-group of an Abelian group \(J\) and \(m\) is an integer such that \(m = 0\) or \(m \geq 2\), then \(r_m(J) \geq r_m(U) + r_m(J - U)\). The proof is incorrect and the following example shows that the theorem is, in fact, not true.

Example 1. Let \(J\) be the group of integers mod 4, and \(U\) the sub-group generated by 2; \(r_2(J) = 1\), \(r_2(U) = 1\), \(r_2(J - U) = 1\).

The proof referred to is correct if \(m = 0\), and the authors, in fact, prove that \(r_0(J) = r_0(U) + r_0(J - U)\). In what follows we shall assume this, and that all groups considered are finitely generated and Abelian.\(^3\)

Theorem 1. If (1) the group \(V = \bigoplus_{i=1}^n N_i\) is the direct sum of indecomposable cyclic sub-groups, \(N_i\), (2) \(m = p_1^{q_1} \cdot p_2^{q_2} \cdots \cdot p_n^{q_n}\), where for each \(i\), \(p_i\) is a prime number, and (3) for each \(i\), \(q_i\) is the number of the \(N_i\) whose orders are divisible by \(p_i^{q_i}\), then \(r_m(V) = k\), where \(k\) is the least of the \(q_i\).\(^4\)

Proof. We can assume, without loss of generality, that \(q_1 \leq q_2 \leq \cdots \leq q_n\). The problem, then, is to show that \(r_m(V) = q_1 = k\).

Clearly, \(V\) is a direct sum \(V = \sum_{i=1}^k V_i + \sum_{i=k+1}^l V_i\) where for each \(i\), \(V_i\) is cyclic and (1) if \(1 \leq i \leq k\), \(V_i\) has order divisible by \(m\), (2) if \(k+1 \leq i \leq l\), \(V_i\) has order not divisible by \(p_i^{q_i}\). For each \(i\), let \(x_i\) be a generating element for \(V_i\). The \(x_i\) form a basis for \(V\) and \(k \leq r_m(V)\).

Suppose \(y_1, y_2, \ldots, y_{k+1}\) is a set of \(k + 1\) elements in \(V\). For each \(i\),

\[
y_i = \sum_{j=1}^{k} a_{ij} x_j + \sum_{j=k+1}^{l} a_{ij} x_j.
\]

For each \(i\), the order of \(\sum_{j=k+1}^{l} a_{ij} x_j\) is not divisible by \(p_i^{q_i}\), so there exist constants \(r_1, r_2, \ldots, r_{k+1}\), no one of which is divisible by \(p_i^{q_i}\).

\(^2\) The elements \(x_1, x_2, \ldots, x_n\) of an Abelian group \(J\) are said to be linearly independent mod \(m\) if \(\sum_{i=1}^n a_i x_i = 0\), where the \(a_i\) are integers, implies that \(a_i = 0\) mod \(m\) for each \(i\). The rank mod \(m\) of \(J\), \(r_m(J)\), is the largest integer \(n\) such that there exists a set of \(n\) elements in \(J\) which are linearly independent mod \(m\); \(r_0(J)\) denotes ordinary rank.

\(^3\) We shall assume, further, that \(r_m(J)\) is finite. Theorems 2 and 3 of this paper are true without the condition that \(J\) be finitely generated. This follows without too much difficulty from the proofs of these theorems.

\(^4\) We assign order 0 to infinite cyclic groups.

487
such that for each \(i \), \(r_i \sum_{j=2}^{i+1} a_{ij}x_j = 0 \). Clearly, for each \(i \),

\[
(2) \quad r_i y_i = r_i \sum_{j=1}^{k} a_{ij}x_j \neq 0.
\]

Since we have \(k+1 \) equations in \(k \) indeterminates, there exist constants \(t_1, t_2, t_3, \ldots, t_{k+1} \), relatively prime, and such that for each \(j \), \(\sum_{i=1}^{k+1} t_i a_{ij} = 0 \). Therefore,

\[
(3) \quad \sum_{i=1}^{k+1} t_i r_i y_i = 0.
\]

At least one of the \(t_i \) is not divisible by \(p_1 \). Therefore, at least one of the \(t_i r_i \) is not divisible by \(p_1^m \), and is, therefore, not divisible by \(m \).

It follows that the \(y_i \) are linearly dependent mod \(m \). Therefore, \(r_m(V) = k \).

The following are direct consequences of the above proof.

Corollary 1. If \(r_m(J) = k \) there exists a set of \(k \) linearly independent elements mod \(m \) each element of which has order \(m \) or 0.

Corollary 2. The rank of \(J \), \(r_0(J) \), is the number of the \(V_i \) whose order is 0, and if \(R_m(J) \) denotes the number of the \(V_i \) whose order is divisible by \(m \), but is not 0, then \(r_m(J) = r_0(J) + R_m(J) \).

Theorem 2. If \(J \) is a finitely generated Abelian group and \(U \) is a sub-group with division\(^5\) of \(J \), then \(r_m(J) = r_m(U) + r_m(J - U) \).

Proof. By Corollary 2 above, \(r_m(U) = r_0(U) + R_m(U) \). Since \(U \) is a sub-group with division, each element of \((J - U) \) has order 0, and \(r_m(J - U) = r_0(J - U) \). Clearly, \(R_m(U) = R_m(J) \). Therefore, since \(r_m(U) + r_m(J - U) = r_0(U) + R_m(U) + r_0(J - U) + R_m(J) = r_0(U) + r_0(J - U) + R_m(U) + R_m(J) = r_0(J) + R_m(J) = r_m(J) \).

The same authors\(^6\) attempt to prove that if \(p \) is a prime number and \(U \) is a sub-group of the group \(J \), then \(r_p(J) \leq r_p(U) + r_p(J - U) \). The proof is incorrect. I offer in its place a valid proof.

Theorem 3. If \(p \) is a prime and \(U \) is a sub-group of the group \(J \), then \(r_p(U) + r_p(J - U) \geq r_p(J) \).

Proof. There is a set of \(r_p(U) \) elements of \(U, x_1, x_2, \ldots, x_{r_p(U)} \) linearly independent mod \(p \). \(R_p(U) \) of these form a basis for the sub-group of \(U \) consisting of all elements in \(U \) of order \(p \). There is a set

\(^5\) The sub-group \(U \) of \(J \) is said to be a sub-group with division of \(J \) provided \(px \in U, p \neq 0 \), implies that \(x \in U \).

\(^6\) Alexandroff and Hopf, loc. cit., p. 573.
y₁, y₂, · · · , yₖ of elements of J such that (1) for each i, yᵢ is of order p, (2) \(k = R_p(J) - R_p(U) \), and (3) \(x_1, x_2, · · · , x_{R_p(U)}, y_1, y_2, · · · , y_k \) is a basis for the sub-group of J consisting of all elements of order p. Clearly, \(U + y_1, U + y_2, · · · , U + y_k \) are independent mod p in \(J - U \), and \(R_p(J - U) \geq k \). Now,

\[
R_p(U) + R_p(J - U) = r_0(U) + R_p(U) + r_0(J - U) + r_p(J - U)
\]

\[
\geq r_0(J) + R_p(U) + k
\]

\[
= r_0(J) + R_p(J) = r_p(J).
\]

Example 1 shows that the inequality can hold. The following example shows that Theorem 3 is not true for composite numbers.

Example 2. Let \(J \) be the group of integers mod 12, and \(U \) the sub-group generated by 2. Then, \(r_4(J) = 1, r_4(U) = 0, r_4(J - U) = 0 \).

It can be proved by methods quite similar to those in this paper that the equality in Theorem 3 holds if and only if \(pU \) equals the common part of \(U \) and \(pJ \), but this lies outside the purpose of this paper.

University of Texas