A THEOREM ON QUADRATIC RESIDUES

LEO MOSER

We give a short proof of the following result.

Theorem. For every prime $p = 3 \pmod{4}$,

$$E = \sum_{h=1}^{(p-1)/2} \left(\frac{h}{p}\right) > 0,$$

that is, the number of quadratic residues in the range 0 to $(p-1)/2$ exceeds the number of nonresidues in this range.

This theorem seems to have been first conjectured by Jacobi and proved by Dirichlet [1] in connection with the theory of binary quadratic forms. Proofs are also given in the books of Bachmann [2] and Landau [3]. More recent proofs are due to Kai-Lai Chung [4] and A. L. Whiteman [5]. All known proofs, including the one given here, are analytic. While a really elementary proof would be of great interest, the following proof may merit consideration because of its brevity.

Our starting point is the following Gaussian summation, proved in [3].

$$\sum_{r=1}^{p-1} \left(\frac{r}{p}\right) e^{2\pi i r/p} = i(p)^{1/2}. \quad (1)$$

By taking imaginary parts, making the substitution $r = n - h$, and multiplying through by $
\frac{1}{p^{1/2}} \cdot n \left(\frac{n}{p}\right)$
in (1) we obtain

$$\frac{1}{n} \left(\frac{n}{p}\right) = \frac{1}{p^{1/2}} \sum_{h=1}^{p-1} \left(\frac{h}{p}\right) \frac{\sin(2\pi nh/p)}{n}. \quad (2)$$

Summing (2) over odd n we get

$$\sum_{m=1}^{\infty} \frac{1}{(2m - 1)} \left(\frac{2m - 1}{p}\right) = \frac{1}{p^{1/2}} \sum_{h=1}^{p-1} \left(\frac{h}{p}\right) \sum_{m=1}^{\infty} \frac{\sin(2\pi(2m - 1)h/p)}{2m - 1}. \quad (3)$$

Now by a well known Fourier expansion

Received by the editors June 30, 1950.

1 Numbers in brackets refer to the references at the end of the paper.
\[
\sum_{m=1}^{\infty} \frac{\sin((2m-1)\theta)}{2m-1} = \begin{cases} \frac{\pi}{4} & \text{for } 0 < \theta < \pi, \\ -\frac{\pi}{4} & \text{for } \pi < \theta < 2\pi. \end{cases}
\]

Using (4) in the right-hand side of (3) we obtain

\[
\sum_{m=1}^{\infty} \frac{1}{2m-1} \left(\frac{2m-1}{p}\right)
= \frac{\pi}{4p^{1/2}} \left[\sum_{h=1}^{(p-1)/2} \left(\frac{h}{p}\right) - \sum_{h=(p+1)/2}^{p-1} \left(\frac{h}{p}\right) \right].
\]

Now since \(-1\) is a nonresidue of \(p\),

\[
\left(\frac{p-h}{p}\right) = -\left(\frac{h}{p}\right)
\]

so that the bracket in (5) reduces to \(2E\). Hence

\[
\sum_{m=1}^{\infty} \frac{1}{2m-1} \left(\frac{2m-1}{p}\right) = \frac{\pi E}{2p^{1/2}}.
\]

Now \(E\) is the difference of two integers whose sum is odd. Hence \(E \neq 0\), and to prove \(E > 0\) it suffices to show \(E \geq 0\). This we shall do by showing that the left-hand side of (7) is not negative.

Consider the following identity, valid for \(s > 1\):

\[
\sum_{m=1}^{\infty} \frac{1}{(2m-1)^s} \left(\frac{2m-1}{p}\right) = \prod_q \left(1 - \frac{1}{q^s} \left(\frac{q}{p}\right) \right)^{-1}
\]

where \(q\) runs over all odd primes. The series on the left is uniformly convergent for \(s \geq 1\). Hence its sum is continuous at \(s = 1\). The infinite product is clearly positive for \(s > 1\). Hence the proof is complete.

It may be noted that the advantage of this proof is due mainly to the use of the Fourier series \(\sum_{m=1}^{\infty} \left(\frac{2m-1}{m}\theta/2m-1\right)\) instead of \(\sum_{m=1}^{\infty} \left(\sin m\theta/m\right)\). For class-number theory, the latter is the natural one, while for the purpose of just proving this theorem alone, the former achieves the desired goal more quickly.

References

Texas Technological College