NOTES ON FOURIER ANALYSIS. XXX
ON THE ABSOLUTE CONVERGENCE OF
CERTAIN SERIES OF FUNCTIONS

GEN-ICHIRÔ SUNOUCHI AND SHIGEKI YANO

1. Introduction. Recently O. Szász [4] has proved the following
theorems which are generalizations of Fatou's theorem (cf. Zygmund
[5, p. 132]).

Theorem A. If the series
\[\sum_{n=1}^{\infty} a_n \cos nx, \quad |a_{n+1}| \leq c|a_n| \quad (c>0); \quad n = 1, 2, \ldots, \]
is absolutely convergent at a point \(x_0 \), then \(\sum_{n=1}^{\infty} |a_n| < \infty \). The same
is true for the series \(\sum_{n=1}^{\infty} a_n \sin nx \), provided that \(x_0 \not\equiv 0 \) (mod \(\pi \)).

Theorem B. Let \(\phi(x) \) be Riemann integrable in the interval (0, 1)
and periodic with period 1 and \(\int_0^1 |\phi(x)| \, dx = 0 \). If the series
\[\sum_{n=1}^{\infty} a_n \phi(nx), \quad 0 < |a_{n+1}| < (1+c/n) |a_n| \quad (c>0; \quad n = 1, 2, \ldots), \]
is absolutely convergent at an irrational point \(x_0 \), then \(\sum_{n=1}^{\infty} |a_n| < \infty \).

There are some gaps between the conditions for the sequences of
coefficients \(\{a_n\} \) in these two theorems. In §2, we shall prove that
the conditions for \(\{a_n\} \) in Theorem B can be replaced by those in
Theorem A.

On the other hand Reves and Szász [2] have proved the analogues
of Cantor-Lebesgue's theorem and Denjoy-Lusin's theorem for the
double trigonometric series. In §3, we shall generalize these theorems:
the former is on the line of Mazur-Orlicz' generalization for Cantor-
Lebesgue's theorem [1, Theorem 1 and its corollary] and the latter
is in the direction of Salem's generalization for Denjoy-Lusin's
theorem [3, Theorem X].

2. Theorems of Fatou-Szász type. We shall give here the gen-
eralizations of Theorems A and B.

Theorem 1. Let \(\phi(x) \) be defined in the interval (0, 1) and periodic
with period 1 and suppose that there exists an interval \(I = (a, b) \),

Received by the editors January 9, 1950 and, in revised form, July 10, 1950.

1 The authors express their hearty thanks to the referee who gave many valuable
suggestions, especially that the original proof of Theorem 1 was incomplete.
2 Numbers in brackets refer to the literature at the end of the paper.

380
\[0 \leq a < b \leq 1, \text{ on which } \phi(x) \text{ is greater than a positive constant } d. \text{ If the series } \sum_{n=1}^{\infty} a_n \phi(nx) (a_n \geq 0) \text{ is absolutely convergent at an irrational point } \xi \text{ and if } 0 < a_{n+1} \leq c a_n (c > 0; n = 1, 2, \cdots), \text{ then } \sum_{n=1}^{\infty} a_n < \infty. \]

For the proof we need the following lemma.

Lemma 1. Let \(J \) be an interval and \(\theta \) be an irrational number contained in the interval \((0, 1)\). Then for an arbitrary real number \(\alpha \) there exists a positive integer \(N \) independent of \(\alpha \) such that at least one of the numbers \(\alpha + n\theta, n = 1, 2, \cdots, N, \) is contained in the interval \(J \) with modulus 1.

Proof. We shall prove more precisely that if we denote the number of the points in the sequence \(\{\alpha + n\theta\}, n = 1, 2, \cdots, n, \) which are contained with modulus 1 in the interval \(J \) by \(n_J(\alpha) \), then the ratio \(n_J(\alpha)/n \) tends independently on \(\alpha \) to the length of the interval \(J \) as \(n \to \infty \); that is, for any given \(\epsilon > 0 \), there is a positive integer \(N \) independent of \(\alpha \) such that \(|n_J(\alpha)/n - l| < \epsilon \) for \(n > N \), where \(l \) is the length of the interval \(J \).

To prove this, let \(f(x) \) be the function which is obtained by extending the characteristic function of the interval \(J \) with period 1. Then there exist two trigonometrical polynomials \(p(x) \) and \(P(x) \) which satisfy the inequalities

\[
1. \quad p(x) \leq f(x) \leq P(x) \quad \text{ in } (0, 1),
\]

\[
2. \quad \int_0^1 [f(x) - p(x)] dx < \epsilon/2, \quad \int_0^1 [P(x) - f(x)] dx < \epsilon/2.
\]

We can write

\[
3. \quad p(x) = \sum_{k=-m}^{m} c_k e^{2\pi i k x}, \quad P(x) = \sum_{k=-m}^{m} C_k e^{2\pi i k x}.
\]

Remembering that

\[
4. \quad \frac{n_J(\alpha)}{n} = \frac{1}{n} \sum_{r=1}^{n} f(\alpha + r\theta),
\]

we have

\[
5. \quad \frac{1}{n} \sum_{r=1}^{n} p(\alpha + r\theta) \leq \frac{n_J(\alpha)}{n} \leq \frac{1}{n} \sum_{r=1}^{n} P(\alpha + r\theta)
\]
by (1).

On the other hand

\[
\frac{1}{n} \sum_{r=1}^{n} \phi(\alpha + r\theta) = \frac{1}{n} \sum_{r=1}^{n} \sum_{k=-m}^{m} c_k e^{2\pi ik(n+1)\theta}
\]

\[
= \frac{1}{n} \sum_{r=1}^{n} \sum_{k=-m}^{m} c_k e^{2\pi ik\theta} e^{2\pi ikn\theta}
\]

\[
= c_0 + \frac{1}{n} \sum_{k=-m}^{m} c_k e^{2\pi ik\theta} \sum_{r=1}^{n} e^{2\pi ikn\theta}
\]

\[
= c_0 + \frac{1}{n} \sum_{k=-m}^{m} c_k e^{2\pi ik\theta} \frac{e^{2\pi ink\theta} - e^{2\pi i(n+1)k\theta}}{1 - e^{2\pi i\theta}},
\]

where \sum' denotes the summation omitting the term for $k = 0$. Thus we have

\[
\left| \int_0^1 \phi(x)dx - \frac{1}{n} \sum_{r=1}^{n} \phi(\alpha + r\theta) \right|
\]

\[
\leq \frac{1}{n} \left| \sum_{k=-m}^{m} c_k e^{2\pi ik\theta} \frac{e^{2\pi ink\theta} - e^{2\pi i(n+1)k\theta}}{1 - e^{2\pi i\theta}} \right|
\]

\[
\leq \frac{1}{n} \sum_{k=-m}^{m} \left| c_k \right| \frac{2}{1 - e^{2\pi i\theta}}
\]

\[
\leq \frac{2\Delta}{n} \sum_{k=-m}^{m} \left| c_k \right|
\]

where

\[
\Delta = \max_{-m \leq k \leq m, k \neq 0} \frac{1}{1 - e^{2\pi i\theta}}
\]

and Δ is finite since θ is irrational and m is fixed; moreover it is evident from the definition that Δ is independent of α.

Therefore if we choose N_1 such that

\[
N_1 > 4\Delta \sum_{k=-m}^{m} \left| c_k \right| / \varepsilon,
\]

we have

\[
\left| \int_0^1 \phi(x)dx - \frac{1}{n} \sum_{r=1}^{n} \phi(\alpha + r\theta) \right| < \varepsilon/2 \quad \text{for } n > N_1.
\]

Quite similarly we can choose N_2 such that
(11) \[\left| \int_0^1 P(x)dx - \frac{1}{n} \sum_{r=1}^{n} P(\alpha + r\theta) \right| < \epsilon/2 \quad \text{for } n > N_2. \]

Let us take \(N = \max (N_1, N_2) \), then we have

\[\int_0^1 P(x)dx - \epsilon/2 < \frac{1}{n} \sum_{r=1}^{n} P(\alpha + r\theta) \leq \frac{n_f(\alpha)}{n} \leq \frac{1}{n} \sum_{r=1}^{n} P(\alpha + r\theta) < \int_0^1 P(x)dx + \epsilon/2 \]

from (5), (10), and (11), and finally

\[\int_0^1 f(x)dx - \epsilon \leq \frac{n_f(\alpha)}{n} \leq \int_0^1 f(x)dx + \epsilon \]

from (2) and (12). Since \(\int_0^1 f(x)dx = l \) is the length of the interval \(J \), this proves our proposition.

We shall proceed to the proof of Theorem 1. Using Lemma 1, we can choose a positive integer \(k \) such that for any integer \(n \) at least one of the \(k \) numbers \(n\xi + \xi, n\xi + 2\xi, \ldots, n\xi + k\xi \) is contained with modulus 1 in the interval \(I \). From the assumption on \(a_n \) (since we can suppose \(c > 1 \) without any loss of generality) we have

\[a_{k-m} \geq a_k/c^m \geq a_k/c^k \quad (m \leq k). \]

Then

\[\sum_{n=1}^{\infty} a_n |\phi(n\xi)| = \sum_{n=0}^{k} \sum_{m=1}^{n} a_{nk+m} |\phi((nk+m)\xi)| \]

\[\geq (d/c^k) \sum_{n=1}^{\infty} a_{nk}. \]

Consequently

\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{k} \sum_{m=1}^{n} a_{nk+m} \leq \sum_{n=1}^{k} \sum_{m=1}^{n} a_{nk}c^m \]

\[\leq \frac{c^{k+1} - 1}{c - 1} \sum_{n=1}^{\infty} a_{nk} \leq \frac{c^k(c^{k+1} - 1)}{d(c - 1)} \sum_{n=1}^{\infty} a_n |\phi(n\xi)| < \infty. \]

This proves the theorem.

Remark. This theorem implies Theorem B in §1; in fact if \(\phi(x) \) is Riemann integrable, \(\phi(x) \) is continuous almost everywhere, therefore the assumption \(\int_0^1 |\phi(x)| dx \neq 0 \) assures the existence of an interval on which \(|\phi(x)| \) is greater than a positive constant.
Theorem 2. Besides the assumption on $\phi(x)$ and $\{a_n\}$ in Theorem 1, we assume that $\phi(0) \neq 0$; then the absolute convergence of the series $\sum_{n=1}^{\infty} a_n \phi(nx)$ for any real x_0 implies the convergence of the series $\sum_{n=1}^{\infty} a_n$.

Proof. If x_0 is irrational, then the result follows from Theorem 1. In case x_0 is rational, say $x_0 = p/q$ where p and q are integers, the numbers nx_0 ($n = 1, 2, \cdots$) are all equal to 0 with modulus 1. An argument quite similar to that in the proof of Theorem 1 proves also the required result.

This theorem implies Theorem A in §1 for the case of cosine series. Corresponding to the case of sine series we shall prove the following theorem.

Theorem 3. Let $\phi(x)$ and a_n satisfy the same conditions as in Theorem 1. If the series $\sum_{n=1}^{\infty} a_n \phi(nx)$ converges absolutely at an irrational x_0 or at a rational x_0, $x_0 = p/q$ say, where p and q are relatively prime integers and there exists at least one of the numbers r/q ($r = 1, \cdots, q-1$) which is not the zero of $\phi(x)$, then the series $\sum_{n=1}^{\infty} a_n$ converges.

Proof. For irrational x_0, this reduces to Theorem 1. Let us suppose that $\phi(r_0/q) \neq 0$, $0 < r_0 \leq q - 1$. Since p and q are relatively prime, there are two integers u and v such that $up + vq = 1$, that is, $up/q = 1/q - v$. Consequently there is a number in the wr_0 consecutive numbers of the sequence $\{nx_0\}$ which is equal to r_0/q with modulus 1. Therefore the same argument as in the proof of Theorem 1 gives the required result.

3. Double trigonometrical series. We shall first state the following lemmas which are generalizations of the results of Mazur-Orlicz [1].

Lemma 2. If $f(x)$ is measurable, bounded, and periodic, we have for every integrable function $g(x)$ in (a, b)

$$
\lim_{m,n \to \infty} \int_a^b f(\omega_n x + \theta_m)g(x)dx = \mathcal{M}(f) \int_a^b g(x)dx,
$$

where $\mathcal{M}(f) = \int_a^b f(x)dx/l$, l being the period of $f(x)$, and ω_{nm} and θ_{nm} are any sequences of real numbers such that $\lim \omega_{nm} = +\infty$.

Proof. If $m_i, n_i \to \infty$ ($i \to \infty$), we have by a result of Mazur and Orlicz [1, Lemma 1]

$$
\lim_{i \to \infty} \int_a^b f(\omega_{m_i} x + \theta_{m_i} n_i)g(x)dx = \mathcal{M}(f) \int_a^b g(x)dx.
$$
This proves Lemma 2.

Lemma 3. If \(f(x) \) is measurable and periodic, then we have almost everywhere,

\[
\lim_{m,n \to \infty} \sup |a_{mn}f(\omega_{mn}x + \theta_{mn})| = \lim_{m,n \to \infty} \sup |a_{mn}| \text{ ess sup } |f(x)|,
\]

where \(\{\omega_{mn}\}, \{\theta_{mn}\} \) are the same as in Lemma 2 and \(\{a_{mn}\} \) is any sequence of real numbers.

Proof. We can choose a sequence of suffixes \(m_i, n_i \) such that \(m_i, n_i \to \infty \) (\(i \to \infty \)) and \(\lim_{i \to \infty} |a_{m_i,n_i}| = \limsup_{m,n \to \infty} |a_{mn}| \). Then by Mazur and Orlicz [1, Theorem 1] we have almost everywhere

\[
\lim_{i \to \infty} |a_{m_i,n_i}f(\omega_{m_i,n_i}x + \theta_{m_i,n_i})| = \lim_{i \to \infty} |a_{m_i,n_i}| \text{ ess sup } |f(x)|
\]

\[
= \lim_{m,n \to \infty} |a_{mn}| \text{ ess sup } |f(x)|.
\]

It follows that almost everywhere

\[
\lim_{m,n \to \infty} |a_{mn}f(\omega_{mn}x + \theta_{mn})| \geq \lim_{m,n \to \infty} |a_{mn}| \text{ ess sup } |f(x)|.
\]

Since the inverse inequality is evident, our lemma is proved.

Lemma 4. If \(f(x) \) and \(g(x) \) are linearly independent, bounded, measurable, and periodic with the same period, then for any sequences \(\{a_{mn}\} \) and \(\{b_{mn}\} \), we have almost everywhere

\[
\lim_{m,n \to \infty} |a_{mn}f(\omega_{mn}x + \theta_{mn}) + b_{mn}g(\omega_{mn}x + \theta_{mn})| \geq c \lim_{m,n \to \infty} (|a_{mn}| + |b_{mn}|),
\]

where \(c = \inf_{|a|,|b| > 0} \{\text{ess sup } |af(x) + bg(x)| \} > 0 \). (See Mazur-Orlicz [1, Theorem 3 and its corollary].)

Proof. We can choose a sequence of indices \(m_i, n_i \) (\(m_i, n_i \to \infty \) as \(i \to \infty \)) such that \(\limsup_{m,n \to \infty} (|a_{mn}| + |b_{mn}|) = \lim_{i \to \infty} (|a_{m_i,n_i}| + |b_{m_i,n_i}|) \). Then we have almost everywhere

\[
\lim_{m,n \to \infty} |a_{mn}f(\omega_{mn}x + \theta_{mn}) + b_{mn}g(\omega_{mn}x + \theta_{mn})| \geq \lim_{i \to \infty} |a_{m_i,n_i}f(\omega_{m_i,n_i}x + \theta_{m_i,n_i}) + b_{m_i,n_i}g(\omega_{m_i,n_i}x + \theta_{m_i,n_i})|
\]

\[
\geq c \lim_{i \to \infty} (|a_{m_i,n_i}| + |b_{m_i,n_i}|)
\]

\[
= c \lim_{m,n \to \infty} (|a_{mn}| + |b_{mn}|),
\]
by a result of Mazur and Orlicz [1, Theorem 3 and its corollary]. This proves the lemma.

We shall now prove the following theorem which is a generalization of Cantor-Lebesgue's theorem for double trigonometric series.

Theorem 4. Let $f(x), g(x)$ be any measurable, periodic functions, and $\phi(y), \psi(y)$ be linearly independent, bounded, measurable, and periodic functions with the same period, and let $\lambda_{mn}, \omega_{mn}$, and ω'_{mn} be the sequences which tend to ∞ as $m, n \to \infty$, and $\tau_{mn}, \theta_{mn}, \theta'_{mn}$ be any sequences. Then for any sequences $\{p_{mn}\}$ and $\{q_{mn}\}$, there exists a constant $c > 0$ depending only on ϕ and ψ, such that

$$\limsup_{m,n \to \infty} \left| \sum_{m,n} p_{mn} f(\omega_{mn} x + \theta_{mn}) \phi(\lambda_{mn} y + \tau_{mn}) + q_{mn} g(\omega'_{mn} x + \theta'_{mn}) \psi(\lambda_{mn} y + \tau_{mn}) \right| \leq c \max \left\{ \limsup_{m,n \to \infty} |p_{mn}|, \limsup_{m,n \to \infty} |q_{mn}| \right\}$$

for almost every (x, y).

Proof. If we fix an x, we have

$$\limsup_{m,n \to \infty} \left| \sum_{m,n} p_{mn} f(\omega_{mn} x + \theta_{mn}) \phi(\lambda_{mn} y + \tau_{mn}) + q_{mn} g(\omega'_{mn} x + \theta'_{mn}) \psi(\lambda_{mn} y + \tau_{mn}) \right| \leq c \limsup_{m,n \to \infty} \left\{ |p_{mn}| f(\omega_{mn} x + \theta_{mn}) | + |q_{mn}| g(\omega'_{mn} x + \theta'_{mn}) \right\}$$

by Lemma 4. Applying Lemma 3, we have for almost every x

$$\limsup_{m,n \to \infty} |p_{mn}| f(\omega_{mn} x + \theta_{mn}) | = \limsup_{m,n \to \infty} |p_{mn}| f(x)$$

and

$$\limsup_{m,n \to \infty} |q_{mn}| g(\omega'_{mn} x + \theta'_{mn}) | = \limsup_{m,n \to \infty} |q_{mn}| g(x)$$

Then by Fubini's theorem we get the theorem.

Corollary. Let
\[A_{mn}(x, y) = a_{mn} \cos mx \cos ny + b_{mn} \sin mx \sin ny \]
\[+ c_{mn} \cos mx \sin ny + d_{mn} \sin mx \sin ny. \]

If \(A_{mn}(x, y) \) tends to zero as \(m, n \to \infty \), for every \((x, y)\) belonging to a plane set of positive measure, then

\[\rho_{mn} = \left(a_{mn}^2 + b_{mn}^2 + c_{mn}^2 + d_{mn}^2 \right)^{1/2} \to 0 \quad \text{as} \quad m, n \to \infty. \]

This is the Reves-Szász generalization of the Cantor-Lebesgue theorem [1, Theorem 1].

Proof. Let us put in Theorem 4

\[f(x) = g(x) = \cos x, \quad \phi(y) = \cos y, \quad \psi(y) = \sin y, \]

Then we may write (see Reves and Szász [2, Theorem 1])

\[A_{mn}(x, y) = \rho_{mn} \cos (mx - \theta_{mn}) \cos ny + q_{mn} \cos (mx - \theta_{mn}') \sin ny. \]

Therefore we get the corollary by Theorem 4.

Theorem 5. Let \(A_{mn}(x, y) \) and \(\rho_{mn} \) be the same as in the above corollary. Then the plane set \(E \)

\[E = \left\{ \left(x, y \right) \mid \limsup_{m,n \to \infty} \sum_{i,j=1}^{m,n} \left| A_{ij}(x, y) \right| \rho_{ij} < \alpha \right\} \]

is of measure zero, provided that \(\alpha < 4/2^{1/2} \pi^2 \) and \(\sum_{m,n=1}^{\infty} \rho_{mn} = \infty \).

Proof. Let \(f(x, y) \) be the characteristic function of the set \(E \), then we have

\[\alpha f(x, y) \geq \limsup_{m,n \to \infty} f(x, y) \sum_{i,j=1}^{m,n} \left| A_{ij}(x, y) \right| \rho_{ij} \]

\[= \limsup_{m,n \to \infty} \frac{f(x, y) \sum_{i,j=1}^{m,n} \left| A_{ij}(x, y) \right| \Delta_{ij}(x)^{1/2}}{\sum_{i,j=1}^{m,n} \Delta_{ij}(x)^{1/2}} \rho_{ij} \]

\[\geq \limsup_{m,n \to \infty} \frac{1}{2^{1/2}} \frac{f(x, y) \sum_{i,j=1}^{m,n} \left| A_{ij}(x, y) \right|}{\sum_{i,j=1}^{m,n} \Delta_{ij}(x)^{1/2}} \]

\[\sum_{i,j=1}^{m,n} \left\{ \left| \rho_{ij} \cos (ix - \theta_{ij}) \right| + \left| q_{ij} \cos (ix - \theta_{ij}') \right| \right\} \rho_{ij} \]

\[\sum_{i,j=1}^{m,n} \rho_{ij} \]

\[\text{Of course, we suppose that } E \text{ is contained in the square } (0, 2\pi; 0, 2\pi). \]
where $\Delta_i(x) = p_i^2 \cos^2 (ix - \theta_{ij}) + q_i^2 \cos^2 (ix - \theta_{ij})$.

Applying Lebesgue's theorem we get

$$
\alpha \int_0^{2\pi} f(x, y) dy \geq \frac{1}{2^{1/2}} \limsup_{m,n \to \infty} \frac{\sum_{i,j=1}^{m,n} \int_0^{2\pi} f(x, y) |A_{i}(x, y)| dy}{\sum_{i,j=1}^{m,n} (\Delta_i(x))^{1/2}} \sum_{i,j=1}^{m,n} \left\{ |p_{ij} \cos (ix - \theta_{ij})| + |q_{ij} \cos (ix - \theta_{ij})| \right\}
$$

Since $\sum_{m,n} = \infty$, we can easily verify that

$$
\sum_{i,j=1}^{m,n} (\Delta_i(x))^{1/2} \geq \frac{1}{2^{1/2}} \sum_{i,j=1}^{m,n} \left\{ |p_{ij} \cos (ix - \theta_{ij})| + |q_{ij} \cos (ix - \theta_{ij})| \right\} = \infty
$$

for almost every x. For such x, we have by Lemma 2

$$
\lim_{m,n \to \infty} \frac{\sum_{i,j=1}^{m,n} \int_0^{2\pi} f(x, y) |A_{i}(x, y)| dy}{\sum_{i,j=1}^{m,n} (\Delta_i(x))^{1/2}} = \frac{2}{\pi} \int_0^{2\pi} f(x, y) dy.
$$

Hence

$$
\alpha \int_0^{2\pi} f(x, y) dy \geq \frac{2}{2^{1/2}} \int_0^{2\pi} f(x, y) dy \cdot \limsup_{m,n \to \infty} \frac{\sum_{i,j=1}^{m,n} \left\{ |p_{ij} \cos (ix - \theta_{ij})| + |q_{ij} \cos (ix - \theta_{ij})| \right\}}{\sum_{i,j=1}^{m,n} p_{ij}}
$$

Since by Lemma 2

$$
\lim_{i,j \to \infty} \int_0^{2\pi} \int_0^{2\pi} f(x, y) \cos (ix - \theta_{ij}) \, dxdy = \frac{2}{\pi} \int_0^{2\pi} \int_0^{2\pi} f(x, y) \, dxdy,
$$

we have

$$
\alpha \int_0^{2\pi} \int_0^{2\pi} f(x, y) \, dxdy \geq \frac{4}{2^{1/2} \pi^2} \int_0^{2\pi} \int_0^{2\pi} f(x, y) \, dxdy.
$$

If $\alpha < 4/2^{1/2} \pi^2$, then we get

$$
\int_0^{2\pi} \int_0^{2\pi} f(x, y) \, dxdy = 0,
$$
that is, E is of measure zero. Thus we get the theorem.

This is a generalization of a theorem of Salem [3, Theorem X].

Denjoy-Lusin's theorem for double trigonometrical series, which was given by Reves and Szász [2, Theorem 2], can be easily derived from Theorem 4.

Literature

TÔHOKU UNIVERSITY