Typically-real functions with assigned zeros
HTML articles powered by AMS MathViewer
- by A. W. Goodman
- Proc. Amer. Math. Soc. 2 (1951), 349-357
- DOI: https://doi.org/10.1090/S0002-9939-1951-0041920-9
- PDF | Request permission
References
- M. Biernacki, Sur les fonctions multivalentes dβordre p, C. R. Acad. Sci. Paris vol. 203 (1936) pp. 449-451.
- A. W. Goodman, On the Schwarz-Christoffel transformation and $p$-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204β223. MR 33886, DOI 10.1090/S0002-9947-1950-0033886-6
- A. W. Goodman and M. S. Robertson, A class of multivalent functions, Trans. Amer. Math. Soc. 70 (1951), 127β136. MR 40430, DOI 10.1090/S0002-9947-1951-0040430-7
- M. S. Robertson, A representation of all analytic functions in terms of functions with positive real part, Ann. of Math. (2) 38 (1937), no.Β 4, 770β783. MR 1503368, DOI 10.2307/1968833
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512β519. MR 51
- Werner Rogosinski, Γber positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no.Β 1, 93β121 (German). MR 1545292, DOI 10.1007/BF01186552
Bibliographic Information
- © Copyright 1951 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 2 (1951), 349-357
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9939-1951-0041920-9
- MathSciNet review: 0041920