NOTE ON THE HURWITZ ZETA-FUNCTION!
N. J. FINE

It is well known that Riemann? gave two proofs of the functional
equation for {(s), the first depending on a contour integration, the
second on the transformation equation for 03(O|‘r). Hurwitz? intro-
duced his generalized zeta-function, defined for R(s) >1 and 0<a<1
by*

) (s a) = 3 (n+ o),

n=0

showed that it can be continued to the entire s-plane with the excep-
tion of a simple pole at s=1, and proved that for R(s)>1,
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n=1 n’

{(1 - % d) =
)

His method of proof depends on a contour integral and parallels Rie-
mann’s first proof. It appears to have been overlooked that the
second method of Riemann can be generalized to obtain the same
results.® The purpose of this paper is to supply such a proof.

For 0<ae<1 and x>0, define

3) f(a, x) = Js(ma, ix)

=1+ 22 ™'z cos 2rna.

n=1
By the transformation equation for the #-function,®
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1 This work is an offshoot of investigations carried out under the auspices of the
Office of Naval Research, Contract N9-ONR90,000.

2 B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grisse,
Monatsberichte der Preussischen Akademie der Wissenschaften (1859, 1860) pp. 671-
680.

3 A. Hurwitz, Zeitschrift fiir Mathematik und Physik vol. 27 (1882) p. 95.

4 Throughout this paper, x*=exp (s log x), the logarithm being real for x>0.

§ R. Lipschitz (J. Reine Angew. Math. vol. 105, pp. 127-159) has used the theta-
function transformation device to derive a functional equation for a general type of
zeta-function, but his results do not appear to include ours.

¢ Whittaker and Watson, Modern analysis, p. 475.
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4 fla, x71) = xl2e™"sf(jax, x) = g2 Y, e re(mta)’,

Nem—o0

From (3) and (4) it is easy to see that f(a, x) tends to the values 1
and 0 exponentially as x tends to « and 0, respectively. Hence the
two functions

©) ‘ F(a, s) = j; lf(a, x) x> 1dz,

©) G@»=£%@@—nWHw

are entire in s. We define
@) H(a, s) = F(a, s) + G(a, s) — 2/s.

For a later purpose, we observe that
7] *® 4d

® —H@9) = [ i D
da 0 da

is also an entire function of s.
Now for R(s)>1,

H(a, s) = fw(f(a, x) — a2 1dy

o L
=2 cos 2mna f erniegel 1y
0

=]

©) H(a, s) = 2a—T (-;-) é ﬁ’s—:l'f (R(s) > 1).
For R(s) <0,
66,9 ==+ [ "fto, i
so that

H(a,s) = fwf(a, x)xt/*dx

= fwf(a, a ) xme2 gy,

By (4), therefore,
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+
H(a, s) = E P OIS Py

(10) H(a,s) = —a—amr(l 3 ) Z ln+a|’““) (R(s) < 0).

N==—o0

With s replaced by 1—s, (10) becomes

(ll)H(a, YT _'/21‘(—;—>{ f: n+ao™+ i (n+1- a)_.}
= —'/21‘( ){f(s, @)+ ¢(s, 1 — a)} (&) > 1).

Now it is easy to see, from (1), that
a
—-;'(S, a) = - s;(s + 1, a)-
da
Hence, differentiating (11) and replacing s by s—1, we have

L @25 =~ (- 1)r-<'-1>/*r( . ){«s, 2

(12)
—t(s,1 — a)} (R(s) > 2).
Combining (11) and (12) yields
8/2
2?(5’ a) = H(d, 1- S)
I'(s/2
(13) /2 -

d

— H(a, R(s) > 2).
T G- DNG =1/ @) RO>D
Equation (13) provides the analytic continuation of {(s, @), and

shows that {(s, ) —(s—1)~! is an entire function of s. Replace s by
1—sin (13):

x-2)/2
2;’(1 -9, a) = mﬂ(d, S)
—3/2

(14)

2
+ma—ﬂ(a 1+5s).

For R(s)>1, we may use (9) to get

9 1 4+ s\ & sin 2xna
(15) 8_ H@,1+s)=— 4,".(1—:)/21\( ) .
a

)=

Na==] n'
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Substituting from (9) and (15) into (14), and simplifying by well
known formulas for the I'-function, we obtain the desired relation (2).

The proof just presented does not cover the classical Riemann
zeta-function, defined, for R(s)>1, by

(o) =2 m
n=1
But it is easy to see that, for R(s) >1,

I Rt

2

n=0 n odd
(16) _ g { z“’: h— i (2n)_,}
= (2° = ().

This provides the continuation of {(s) and shows that it has a simple
pole at s=1, with possible simple poles at s=2nwi/log 2 (n=0,
+1, £2,-- ). Now if we set a=1/2 in equation (2), we obtain,
for R(s)>1,

(1= D) e S = S S

' ? ZP(S) cos (11'5/2) n=1 n even n odd

=23 n) — X

= (27 = 1{(s).

Using (16) with s replaced by 1—s, we get the required functional
equation for {(s),
2T(s) cos (ws/2)

17) (A —s)= ———(éﬂ_—);———i‘(S). .

Since the right side of (17) is regular at s=1—2nwi/log 2, the only
singularity of {(s) is the simple pole at s=1.
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