Contents of Volume 2, Number 4
HTML articles powered by AMS MathViewer
View front and back matter from the print issue
- Sums of symmetrical random variables
- D. A. Darling
- Proc. Amer. Math. Soc. 2 (1951), 511-517
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043405-2
- Fréchet and Kerékjártó equivalence
- Earl J. Mickle
- Proc. Amer. Math. Soc. 2 (1951), 518-521
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043455-6
- The centroid of a convex body
- Preston C. Hammer
- Proc. Amer. Math. Soc. 2 (1951), 522-525
- DOI: https://doi.org/10.1090/S0002-9939-1951-0052801-9
- On algebraic simple monic sets of polynomials
- Ragy H. Makar and Bushra H. Makar
- Proc. Amer. Math. Soc. 2 (1951), 526-537
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042515-3
- Nil $PI$-rings
- S. A. Amitsur
- Proc. Amer. Math. Soc. 2 (1951), 538-540
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042383-X
- Note on a theorem of Gelfand and Šilov
- Fulton Koehler
- Proc. Amer. Math. Soc. 2 (1951), 541-543
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042618-3
- On finiteness conditions for a convex body
- Harvey Cohn
- Proc. Amer. Math. Soc. 2 (1951), 544-546
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043139-4
- On the finite determination of critical lattices
- Harvey Cohn
- Proc. Amer. Math. Soc. 2 (1951), 547-549
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043140-0
- A combinatorial theorem with an application to latin rectangles
- H. J. Ryser
- Proc. Amer. Math. Soc. 2 (1951), 550-552
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042361-0
- A note on the solution of the unilateral matrix equation
- James H. Bell
- Proc. Amer. Math. Soc. 2 (1951), 553-557
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042370-1
- On magic squares constructed by the uniform step method
- T. M. Apostol and Herbert S. Zuckerman
- Proc. Amer. Math. Soc. 2 (1951), 557-565
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043813-X
- Some limits of Boolean algebras
- Franklin Haimo
- Proc. Amer. Math. Soc. 2 (1951), 566-576
- DOI: https://doi.org/10.1090/S0002-9939-1951-0045084-7
- Integral bases and varieties multiply of the first species
- H. T. Muhly
- Proc. Amer. Math. Soc. 2 (1951), 576-580
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043497-0
- An extension of the “principal theorem” of Wedderburn
- H. E. Campbell
- Proc. Amer. Math. Soc. 2 (1951), 581-585
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042397-X
- A generalization of the Rutt-Roberts theorem
- Gail Young
- Proc. Amer. Math. Soc. 2 (1951), 586-588
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042708-5
- A generalization of a theorem of Fenchel
- Olof Hanner and Hans Rådström
- Proc. Amer. Math. Soc. 2 (1951), 589-593
- DOI: https://doi.org/10.1090/S0002-9939-1951-0044142-0
- On Appell polynomials
- R. S. Varma
- Proc. Amer. Math. Soc. 2 (1951), 593-596
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042547-5
- Convexly generated $k$-dimensional measures
- Edward F. Moore
- Proc. Amer. Math. Soc. 2 (1951), 597-606
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043175-8
- A necessary and sufficient condition that a curve lie on a hyperquadric
- Louis C. Graue
- Proc. Amer. Math. Soc. 2 (1951), 607-612
- DOI: https://doi.org/10.1090/S0002-9939-1951-0053566-7
- A generalization of Laplace’s method
- W. Fulks
- Proc. Amer. Math. Soc. 2 (1951), 613-622
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043272-7
- A residue theorem for finite Blaschke products
- Maurice Heins
- Proc. Amer. Math. Soc. 2 (1951), 622-624
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043212-0
- On the univalence of functions whose derivative has a positive real part
- F. Herzog and G. Piranian
- Proc. Amer. Math. Soc. 2 (1951), 625-633
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043211-9
- An integral on a space of continuous functions
- Bernard W. Lindgren
- Proc. Amer. Math. Soc. 2 (1951), 634-643
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043177-1
- On derivative and translational bases for periodic functions
- R. E. Edwards
- Proc. Amer. Math. Soc. 2 (1951), 644-653
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043250-8
- Two mapping properties of schlicht functions
- J. L. Ullman
- Proc. Amer. Math. Soc. 2 (1951), 654-657
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043210-7
- Averages of the coefficients of schlicht functions
- G. Milton Wing
- Proc. Amer. Math. Soc. 2 (1951), 658-662
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042511-6
- A note on ergodic theory
- R. S. Phillips
- Proc. Amer. Math. Soc. 2 (1951), 663-670
- DOI: https://doi.org/10.1090/S0002-9939-1951-0042614-6