A COMBINATORIAL THEOREM WITH AN APPLICATION TO LATIN RECTANGLES

H. J. RYSER

1. Introduction. In the present paper a study is made of matrices of \(r \) rows and \(n \) columns, composed entirely of zeros and ones, with exactly \(k \) ones in each row. The problem considered is that of adjoining \(n-r \) rows of zeros and ones to obtain a square matrix with exactly \(k \) ones in each row and in each column. In \(\S 2 \) it is shown that the obvious necessary conditions for the adjunction of \(n-r \) rows are also sufficient. The theorem of \(\S 2 \) has an immediate application to the study of latin squares, and yields in \(\S 3 \) a generalization of the basic existence theorem of Marshall Hall \([2]\).\(^1\)

2. A combinatorial theorem.

Theorem 1. Let \(A \) be a matrix of \(r \) rows and \(n \) columns, composed entirely of zeros and ones, where \(1 \leq r < n \). Let there be exactly \(k \) ones in each row, and let \(N(i) \) denote the number of ones in the \(i \)th column of \(A \). If, for each \(i = 1, 2, \ldots, n \),

\[
 k - (n - r) \leq N(i) \leq k,
\]

then \(n-r \) rows of zeros and ones may be adjoined to \(A \) to obtain a square matrix with exactly \(k \) ones in each row and in each column.

The proof is by mathematical induction. Let \(t \) denote the number of columns of \(A \) with \(N(i) < k \). Then \(n-t \) denotes the number of columns of \(A \) with \(N(i) = k \), and consequently \(kr = N(1) + \cdots + N(n) \geq (n-t)k + (k-(n-r))t \). Thus \(k(r-n) \geq t(r-n) \), whence \(t \geq k \).

Next let \(p \) denote the number of columns of \(A \) with \(N(i) = k - (n-r) \). Then \(n-p \) denotes the number of columns with \(N(i) > k - (n-r) \). Consequently \(kr = N(1) + \cdots + N(n) \leq p(k - (n-r)) + (n-p)k \), whence \(k(r-n) \leq p(r-n) \) and \(p \leq k \).

We now adjoin to \(A \) a row consisting of \(k \) ones and \(n-k \) zeros. Since \(t \geq k \), there are at least \(k \) positions where ones may be inserted so that the resulting \((r+1) \)-rowed matrix will have at most \(k \) ones in each column. Moreover, since \(p \leq k \), the ones may be inserted in all of those columns with \(N(i) = k - (n-r) \). In the resulting \((r+1) \)-rowed matrix, let \(M(i) \) denote the number of ones in the \(i \)th column.

\[\text{Presented to the Society, November 25, 1950; received by the editors September 16, 1950.}\]

\(^1\) Numbers in brackets refer to the references at the end of the paper.
Because of the structure of the adjoined row, it is clear that

\[k - (n - (r + 1)) \leq M(i) \leq k. \]

The process may be continued inductively, and the resulting square matrix possesses \(k \) ones in each row and column.

A rectangular matrix \(L \) composed of zeros and ones is called a permutation matrix provided that it satisfies the equation \(LL^T = I \), where \(L^T \) is the transpose of \(L \) and \(I \) is the identity matrix. Let \(A \) be a square matrix of zeros and ones, with exactly \(k \) ones in each row and in each column. A classical theorem of König asserts that

\[A = L_1 + L_2 + \cdots + L_k, \]

where the \(L_i \) are permutation matrices [5]. Actually König’s theorem is a special case of P. Hall’s theorem on the distinct representatives of subsets [4]. The latter theorem has been the subject of the recent investigations of Everett and Whaples [1], and Marshall Hall [3].

Corollary. For the matrix \(A \) of Theorem 1, \(A = L_1 + L_2 + \cdots + L_k \), where the \(L_i \) are permutation matrices.

The corollary follows immediately upon and application of Theorem 1 and König’s theorem.

3. **The application to latin rectangles.** A latin rectangle of order \(r \) by \(s \) based upon the integers 1, 2, \cdots, \(n \) is defined as an array of \(r \) rows and \(s \) columns formed from the integers 1, 2, \cdots, \(n \) in such a way that the integers in each row and in each column are distinct. The latin rectangle is said to be extendible to an \(n \) by \(n \) latin square provided that it is possible to adjoin \(n - s \) columns and \(n - r \) rows in such a way that the resulting array is an \(n \) by \(n \) latin square. By utilizing the theory of distinct representatives of subsets, Marshall Hall has shown that every \(r \) by \(n \) latin rectangle may be extended to an \(n \) by \(n \) latin square [2].

Theorem 2. Let \(T \) be an \(r \) by \(s \) latin rectangle based upon the integers 1, 2, \cdots, \(n \). Let \(N(i) \) denote the number of times that the integer \(i \) occurs in \(T \). A necessary and sufficient condition in order that \(T \) may be extended to an \(n \) by \(n \) latin square is that for each \(i = 1, 2, \cdots, n \),

\[N(i) \geq r + s - n. \]

Let \(T_i \) denote the set of \(s \) integers formed from the \(i \)th row of \(T \). Let \(S_i \) denote the set of the \(k = n - s \) integers among 1, 2, \cdots, \(n \) which are not in \(T_i \), and let \(M(i) \) denote the number of times that the integer \(i \) occurs among the sets \(S_1, S_2, \cdots, S_r \).
Now if T is extendible to a latin square, then the integer i cannot occur among the sets S_1, S_2, \ldots, S_r more than $k = n - s$ times. Hence $M(i) \leq n - s$. But $N(i) + M(i) = r$, whence $N(i) \geq r + s - n$. Thus the condition of the theorem is a necessary one.

To prove the sufficiency we form from the sets S_i a matrix A of order r by n, composed of zeros and ones. Let S_i be composed of the integers i_1, i_2, \ldots, i_k. In the ith row of A insert ones in columns i_1, i_2, \ldots, i_k, and zeros elsewhere in this row. The matrix A has then exactly k ones in each row, and $M(i)$ is now the sum of the ith column of A. By hypothesis $N(i) = r - M(i) \geq r + s - n$, so that for $i = 1, 2, \ldots, n$, $M(i) \leq k$. Since T is an r by s latin rectangle, $N(i) \leq s$, whence $k - (n - r) \leq M(i)$. By the corollary of Theorem 1, it now follows that $A = L_1 + L_2 + \cdots + L_k$, where the L_i are rectangular permutation matrices. Let the one in row j of L_i occur in column t_j. From the integers t_j form the k sets (t_1, t_2, \ldots, t_r), each containing r distinct integers. These sets may now be adjoined to T to obtain a latin rectangle of order r by n. The latter may then be extended to an n by n latin square as in [2]. This does not differ essentially from completing the transposed n by r latin rectangle to an n by n latin square by the method already indicated, the condition on $N(i)$ being then trivially satisfied.

REFERENCES

Ohio State University