TWO MAPPING PROPERTIES OF SCHLICHT FUNCTIONS

J. L. ULLMAN

The mapping properties we shall prove hold for the normalized exterior mapping function of a simple analytic curve. Let \(C \) be a simple analytic curve in the \(z \)-plane and designate its exterior by \(D \). The normalized exterior mapping function of \(C \) is the analytic function \(w = f(z) \) which is uniquely determined by the conditions that (i) it is regular in \(D \) except for a simple pole at \(z = \infty \), (ii) its power series expansion about \(z = \infty \) has the normalization

\[
(1) \quad w = z + a_0 + \frac{a_1}{z} + \cdots,
\]

and (iii) it maps \(D \) in a 1-1 manner onto the exterior of a circle \(\Sigma \), \(|w| = \rho \).

Theorem I. Let \(C \) be a simple analytic curve, and designate its exterior by \(D \). Let \(f(z) \) be the normalized exterior mapping function of \(C \). Let \(\sigma \) be a circle with center \(z_0 \), whose closed interior lies in \(D \). Then \(F(z) = f(z)/(z - z_0) \) maps \(\sigma \) onto a curve in the \(w \)-plane that is star-shaped from the point \(w = 0 \).

Proof. A curve \(\Gamma \) is star-shaped with respect to a point \(A \) in its interior if it is a simple curve, and if each point of \(\Gamma \) can be connected to \(A \) by a straight line lying in the interior of \(\Gamma \). Let \(\sigma \) have radius \(r \), and let \(Z \) be a point on \(\sigma \). Then \(Z - z_0 = re^{i\theta} \). Let \(F(Z) = Re^{i\phi} \). For the image of \(\sigma \) to be star-shaped, \(d\phi/d\theta \) must not vanish, and be of constant sign for \(0 \leq \theta < 2\pi \). Since \(F(z) \) has a simple pole in \(\sigma \), and otherwise is regular and nonzero there, \(\phi \) decreases by \(2\pi \) when \(\theta \) increases by \(2\pi \), so \(d\phi/d\theta \) must be negative for some value \(\theta' \), \(0 \leq \theta' < 2\pi \). We now show that it is negative for each value of \(\theta \) in the interval.

We first express \(d\phi/d\theta \) at a point \(Z \) on \(\sigma \) in terms of \(f(Z) \). Start with

\[
\frac{d\phi}{d\theta} = \frac{1}{d\theta} \text{Im} \log F(Z)
\]

(2)

\[
= \frac{d}{d\theta} \text{Im} ((\log f(Z) - \log (Z - z_0))).
\]

Presented to the Society, November 26, 1949; received by the editors May 26, 1950 and, in revised form, July 24, 1950.

654
Differentiate, to obtain

\[
\frac{d\phi}{d\theta} = \text{Im} \left(\frac{f'(Z)}{f(Z)} \frac{dZ}{d\theta} - \frac{1}{Z - z_0} \frac{dZ}{d\theta} \right).
\]

Substituting \(dZ/d\theta = i(Z - z_0)\), we obtain

\[
\frac{d\phi}{d\theta} = \text{Im} \left(i(Z - z_0) \frac{f'(Z)}{f(Z)} - i \right)
\]

\[
= \text{Re} \left((Z - z_0) \frac{f'(Z)}{f(Z)} - 1 \right).
\]

We now use the Cauchy integral formula to obtain a representation for \(f'(Z)/f(Z)\). Since \(f'(z)/f(z)\) is regular in \(D\), and tends to zero as \(z \to \infty\), and since each point \(Z\) lies in \(D\), for a fixed \(Z\) we have

\[
\frac{f'(Z)}{f(Z)} = \frac{1}{2\pi i} \int_C \frac{f'(z)}{z - Z} \frac{1}{f(z)} \, dz.
\]

Let \(f(z) = \rho e^{ia}\) when \(z\) is on \(C\), and indicate the inverse of \(w = f(z)\) by \(z = z(w)\). Then \((f'(z)/if(z)) \, dz = d\alpha\) and from (5) we have

\[
\frac{f'(Z)}{f(Z)} = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{Z - z(\rho e^{ia})} \, d\alpha.
\]

Substituting (6) in (4), we obtain

\[
\frac{d\phi}{d\theta} = \text{Re} \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{Z - z_0}{Z - z(\rho e^{ia})} \, d\alpha - 1 \right).
\]

Since \((1/2\pi)\int_0^{2\pi} d\alpha = 1\), this can be written

\[
\frac{d\phi}{d\theta} = \text{Re} \left(\frac{1}{2\pi} \int_0^{2\pi} \left(\frac{Z - z_0}{Z - z(\rho e^{ia})} - 1 \right) \, d\alpha \right)
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \text{Re} \left(\frac{z(\rho e^{ia}) - z_0}{Z - z(\rho e^{ia})} \right) \, d\alpha.
\]

The integrand in (8) is a continuous function of \(\alpha\) since the circumference of \(\sigma\) is bounded from \(C\). Hence, to prove \(d\phi/d\theta < 0\), it suffices to show that the integrand in (8) is negative for \(\alpha, 0 \leq \alpha < 2\pi\). Indeed, let \(\alpha_1\) be a value in this interval, and let \(z(\rho e^{i\alpha}) = z_1\). Then

\[
\text{Re} \frac{z_1 - z_0}{Z - z_1} < 0
\]

if
We write

\[
\Re \frac{Z - z_1}{z_1 - z_0} < 0.
\]

We write

\[
\Re \frac{Z - z_1}{z_1 - z_0} = \Re \frac{Z - z_0 + z_0 - z_1}{z_1 - z_0} = \Re \frac{Z - z_0}{z_1 - z_0} - 1.
\]

Since \(|Z - z_0| < |z_1 - z_0|\), we have

\[
\Re \frac{Z - z_0}{z_1 - z_0} - 1 \leq \left| \frac{Z - z_0}{z_1 - z_0} \right| - 1 < 0.
\]

From (12) it follows that the integrand in (8) is negative for each value of \(Z\) on \(\sigma\), and the theorem is proved.

Theorem II. Let \(C\) be a simple analytic curve, and designate its exterior by \(D\). Let \(f(z)\) be the normalized exterior mapping function of \(C\). Let \(Z_1\) and \(Z_2\) be two points in \(D\). If \(Z_1\) and each point of \(C\) lie on the same side of the perpendicular bisector, \(L\), of the line joining \(Z_1\) and \(Z_2\), then \(|f(Z_1)| < |f(Z_2)|\).

Proof. Representation (6) for \(f'(Z)/f(Z)\) is valid for \(Z\) in \(D\), hence by integration

\[
\log f(Z_i) = \frac{1}{2\pi} \int_{0}^{2\pi} \log (Z_i - z(\rho e^{i\alpha})) d\alpha \quad (i = 1, 2).
\]

It then follows that

\[
\log \left| \frac{f(Z_1)}{f(Z_2)} \right| = \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| \frac{Z_1 - z(\rho e^{i\alpha})}{Z_2 - z(\rho e^{i\alpha})} \right| d\alpha.
\]

The integrand in (14) is a continuous function of \(\alpha\). From the hypothesis it follows that \(|(Z_1 - z(\rho e^{i\alpha}))/(Z_2 - z(\rho e^{i\alpha}))| \leq 1\). The inequality must hold for some \(\alpha\), for otherwise \(z(\rho e^{i\alpha})\) would be restricted to a line and \(C\) would not be simple. Hence the integral in (14) is negative and \(|f(Z_1)| < |f(Z_2)|\). This completes the proof.

Theorem I provides a complement to results stated by Pólya-Szegő \[1, pp. 104–105\]. It also gives part of the domain of schlichtness of the ratio of two schlicht functions.

At the suggestion of the referee we shall discuss Theorem II*, which is Theorem II under the more general hypothesis that \(D\) is an arbitrary, simply-connected domain containing \(z = \infty\), its bound-

1 This refers to the bibliography at the end of the paper.
ary set C is not an analytic curve (since this case is covered by Theorem II), and $f(z)$ is the analytic function with normalization (1) which maps D in a 1-1 manner onto the exterior of a circle Σ, $|w| = \rho$. We lose no generality in taking L to be the real axis, in which case Z_1 and Z_2 can be replaced by Z and Z^*; where $\text{Im } Z > 0$.

If C is in the half-plane $\text{Im } z > 0$, a level curve C_1 of $w = f(z)$ also lies in this half-plane with Z in its exterior, and this curve can be used in place of C in the proof used for Theorem II. This shows that $|f(Z)| < |f(Z^*)|$. If C lies in the half-plane $\text{Im } z \geq 0$, touching L, the level curves of $f(z)$ will all be cut by L. Select a sequence, $\{C_k\}$, whose exteriors exhaust D. In the proof of Theorem II, replace C by C_n to obtain

$$\log \frac{|f(Z)|}{|f(Z^*)|} < \epsilon_n,$$

where $\epsilon_n > 0$ and ϵ_n tends to zero as n tends to ∞. Hence

$$|f(Z)| \leq |f(Z^*)|.$$

We now show that equality in (16) implies that C coincides with L. Suppose $|f(Z_1)| = |f(Z_1^*)|$, where Z_1 is an interior point of D, satisfying $\text{Im } Z_1 > 0$. Since (16) holds in a neighborhood of Z_1, $f(z)$ must satisfy the functional relationship

$$f(z) = e^{i\alpha} (f(z^*))^*,$$

where α is a constant, $0 \leq \alpha < 2\pi$. Letting $x \to \infty$, $z = x + iy$, we see that, because of normalization (1), α must equal 0. But then, interpreted geometrically, (17), with $\alpha = 0$, implies that C is symmetric about L. Since C lies in the half-plane $\text{Im } z \geq 0$, it must coincide with L. Since C is the boundary of a simply-connected domain, it is an interval of L. Hence

$$f(z) = \frac{(az + b) + ((az + b)^2 - 1)^{1/2}}{2a}$$

where a, b are real, $a > 0$, and the branch is determined by choosing the positive sign of the radical for z positive and sufficiently large.

Bibliography

University of Michigan

* Z^* denotes the complex conjugate of Z.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use