On the univalence of functions whose derivative has a positive real part
HTML articles powered by AMS MathViewer
- by F. Herzog and G. Piranian
- Proc. Amer. Math. Soc. 2 (1951), 625-633
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043211-9
- PDF | Request permission
References
- K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science, Hokkaido Imperial University, Sapporo (I) vol. 2 (1934-1935) pp. 129-155.
- Stefan E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310–340. MR 1501813, DOI 10.1090/S0002-9947-1935-1501813-X J. Wolff, L’intégrale d’une fonction holomorphe et à partie réelle positive dans un demi-plan est univalente, C. R. Acad. Sci. Paris vol. 198 (1934) pp. 1209-1210.
Bibliographic Information
- © Copyright 1951 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 2 (1951), 625-633
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9939-1951-0043211-9
- MathSciNet review: 0043211