THE WEDDERBURN PRINCIPAL THEOREM
IN BANACH ALGEBRAS

CHESTER FELDMAN

The Principal Theorem of Wedderburn for a finite-dimensional algebra \(A \) states that \(A \) is the vector space direct sum of its radical \(R \) and an algebra isomorphic to \(A/R \). It will be shown that the corresponding theorem is not true for all Banach algebras, but that it is true with certain restrictions.

The terminology of Jacobson [3] will be followed for radical, quasi-inverse, and quasi-regular. The notations \(x \odot y = x + y + xy \) and \(x' \) for the quasi-inverse of \(x \) will also be employed.

DEFINITION 1. A Banach algebra is a complete normed linear space which is also an algebra over the complex numbers satisfying \(\|xy\| \leq \|x\| \|y\| \). All the following results are proved for real algebras in [1] by the same methods.

To show that the Wedderburn theorem does not hold for an arbitrary Banach algebra, consider the commutative algebra \(A \) which is the completion of the algebra of all finite sums

\[
\sum_{i=1}^{n} \alpha_i e_i + \beta r
\]

where \(\alpha_i \) and \(\beta \) are complex, \(e_i \) are mutually orthogonal idempotents, \(r^2 = 0 \), \(e_i e_j = \delta_{ij} e_i \), and

\[
\| \sum \alpha_i e_i + \beta r \| = \max \left\{ \left(\sum |\alpha_i|^2 \right)^{1/2}, \ |\beta - \sum \alpha_i| \right\}.
\]

It is easy to show this defines a norm, but it is also necessary to verify that \(\|xy\| \leq \|x\| \|y\| \). Let \(x = \sum \alpha_i e_i + \gamma r \), \(y = \sum \beta_i e_i + \nu r \). Then

\[
x y = \sum \alpha_i \beta_i e_i; \quad \|xy\| = \max \left\{ \left(\sum |\alpha_i \beta_i|^2 \right)^{1/2}, \ \left(\sum \sum |\alpha_i \beta_i|^2 \right)^{1/2} \right\}.\]

By the Cauchy inequality,

\[
\sum |\alpha_i \beta_i| \leq \sum |\alpha_i| \beta_i \leq \left(\sum |\alpha_i|^2 \right)^{1/2} \left(\sum \beta_i^2 \right)^{1/2}.
\]

Together with \(\sum |\alpha_i \beta_i|^2 \leq \sum |\alpha_i|^2 \sum |\beta_i|^2 \) this shows \(\|xy\| \leq \|x\| \|y\| \). Hence \(A \) is a Banach algebra.

\(A/R \) is the algebra of all sequences \(\sum \alpha_i u_i \) where \(u_i^2 = u_i \), \(\alpha_i \) are complex, and \(\| \sum \alpha_i u_i \| = \left(\sum |\alpha_i|^2 \right)^{1/2} < \infty \). \(A/R \) contains the element \(x = \sum_{i=1}^{\infty} i^{-2} u_i \), since \(\sum i^{-2} = \pi^2/6 \), but there is no element

Received by the editors November 27, 1950.

\(^1 \) Numbers in brackets refer to the references cited at the end of the paper.
\[\sum_{i=1}^{n} e_i \text{ in } A, \text{ for } \sum_{i=1}^{n} e_i \text{ diverges. Therefore there is no subalgebra of } A \text{ isomorphic to } A/R. \]

It can be shown [1] that the radical of \(A \) is one-dimensional. Thus no restriction on the dimension of the radical will suffice. However it will now be shown that it is sufficient for \(A/R \) to be finite-dimensional.

Theorem 1. If \(A \) is a Banach algebra, \(R \) its radical, and \(A/R \) is finite-dimensional, then there is a subalgebra \(S \) of \(A \) isomorphic and homeomorphic to \(A/R \). \(A \) is the vector space direct sum \(S + R \).

Lemma 1. If \(A \) is a Banach algebra, \(R \) its radical, and \(\{ u_i \} \) a denumerable set of pairwise orthogonal idempotents of \(A/R \), then there exist idempotents \(e_i \) in \(A \) mapping on \(u_i \) via \(A \to A/R \), and the \(e_i \) are pairwise orthogonal.

The proof is by induction. Let \(a_1 \) be an element of \(A \) mapping on the class \(u_1 \). Then \(a_1^2 - a_1 = r_1 \) in \(R \) by hypothesis. For any \(r \) in \(R \) there exists \((1 + 4r)^{-1/2} = 1 - 2r + 6r^2 - 20r^3 + \cdots \) since \(\| r^n \|^{1/n} \to 0 \) [2] guarantees convergence of this series. Define \(e_1 = (2a_1 - 1)[2(1 + 4r)^{-1/2}]^{-1} + 1/2 = a_1(1 - 2r + 6r^2 - \cdots) + (r - 3r^2 + 10r^3 - \cdots) \). Then \(e_1^2 = e_1 \) and \(e_1 \) maps on \(u_1 \) since \(a_1 \) does. Assume there exist \(e_1, \ldots, e_{t-1} \) such that \(e_i^2 = e_i, e_i e_j = 0 = e_j e_i \) for \(i \neq j \), and \(e_i \to u_i, i = 1, 2, \ldots, t-1 \). Define \(f = \sum_{i=1}^{t-1} e_i \). Then \(f^2 = f, f e_i = e_i f \). Let \(b_i \) be any element such that \(b_i \to u_i \). Define \(a_i = (1-f)b_i(1-f) \). Then \(e_i a_i = a_i e_i = 0, a_i u_i \to 0 \) since \(f b_i \to 0, f b_i \to 0, \) and \(f b_i \to 0 \). Hence \(a_i^2 - a_i = r_i \) in \(R \) and \(e_i r_i = e_i e_i = 0, i = 1, 2, \ldots, t-1 \). Define \(e_i = (2a_i - 1)[2(1 + 4r_i)^{-1/2}]^{-1} + 1/2 \). Then \(e_i^2 = e_i, e_i \to u_i \), and \(e_i e_i = e_i e_i = 0 \) since \(e_i a_i = e_i e_i = 0 \). This completes Lemma 1.

Lemma 2. If \(A/R \) contains a ring direct sum \(M_1 \oplus M_2 \oplus \cdots \oplus M_t \) of total matric algebras \(M_i \), then \(A \) contains a ring direct sum of total matric algebras \(S_1 \oplus M_1 \) via \(A \to A/R \).

Consider first a single matric algebra \(M \subset A/R \), where \(M \) is generated over the complexes by \(u_{ij} \), \(u_{ii} \) are pairwise orthogonal idempotents, \(u_{ij} u_{jk} = u_{ik} \), and \(u_{ij} u_{ik} = 0 \) for \(k \neq j \). Since there are a finite number of \(u_{ii} \), by Lemma 1 \(A \) contains idempotents \(e_i \to u_i \) with \(e_i e_{ij} = e_{ij} e_i = 0 \) for \(i \neq j \). Choose an element \(v_{11} \to u_{11} \) and an element \(v_{1j} \to u_{1j} \). Since \(u_{11} u_{11} = u_{11} \) and \(u_{1i} u_{1j} = u_{1j} \), \(v_{1i} \) may be chosen in \(e_{11} e_{11} \); \(v_{1i} \) may be chosen in \(e_{11} e_{1j} \). Then \(v_{1i} v_{1j} \to u_{1j} u_{1j} = u_{11} \). Hence \(v_{1i} v_{1j} = u_{1j} + a_j \) where \(a_j \) is in \(R \cap e_{11} e_{11} \). By [3], \(a_j^* \) exists. \(e_{11} + a_j \) \((e_{11} + a_j) \) \(= e_{11} + a_j e_{11} + e_j a_j + a_j a_j = e_{11} \) since \(a_j^* = \sum (-a_j) = a_j \) is also in \(e_{11} e_{11} \). Define \(e_{ij} = e_{i1} e_{1j} \). Then \(e_{ij} e_{jk} = e_{ik} \) and \(e_{ij} e_{kh} = 0 \) for \(j \neq k \). Clearly \(e_{ij} \) is
1951] WEDDERBURN PRINCIPAL THEOREM IN BANACH ALGEBRAS 773

in \(A \) and \(e_{ij} \rightarrow u_{ij} \). Thus \(A \) contains a total matric algebra \((e_{ij}) \) isomorphic to \(M \). The sum of the algebras \(S_i \) so constructed for each \(M_i \) is the ring direct sum since the basis elements are constructed from mutually orthogonal idempotents. This completes Lemma 2.

Proof of Theorem. \(A/R \) is the direct sum of a finite number of finite-dimensional total matric algebras over the complex numbers. Hence \(A \) contains a subalgebra \(S \cong A/R \). Since the isomorphism \(S \rightarrow A/R \) is continuous, it is a homeomorphism. \(S \) is semi-simple; so \(S \cap R = 0 \). Therefore \(S + R \) is a vector space direct sum.

When \(A/R \) is not finite-dimensional the theorem can still be proved if \(R \) is finite-dimensional and \(A/R \) is a well known type of algebra most generally defined in [4] as follows:

Definition 2. The \(B(\infty) \) direct sum of a denumerable number of algebras \(A_i \) is the completion in a specified norm of the algebra of all sequences \(\{a_i\} \) such that \(a_i \) in \(A_i \) are 0 for all but a finite number of \(i \).

Theorem 2. If \(A \) is a Banach algebra, the radical \(R \) of \(A \) is finite-dimensional, and \(A/R \) is the \(B(\infty) \) direct sum of finite-dimensional total matric algebras, then \(A \) is a vector space direct sum, \(A = B + C + D \), where \(B \) is finite-dimensional, \(BC = CB = 0 \), every idempotent of \(C \) mapping on an element in the basis of \(A/R \) is orthogonal to \(R \), and \(D \subset R \). When \(A \) is commutative, \(D = 0 \) and \(A \) is a ring direct sum of \(B \) and \(C \).

Let \(n \) be the dimension of \(R \). Then there are at most \(n \) distinct primitive orthogonal idempotents \(e_k \) and \(n \) distinct primitive orthogonal idempotents \(e_s \) of \(A \) for which \(e_k e_s \neq 0 \) and \(r_k e_s \neq 0 \) for any \(r_k \) and \(r_s \) in \(R \). Otherwise

\[
e_{n+1} r_{n+1} = \sum_{k=1}^{n} \alpha_k e_k r_{n+1}, \quad r_{n+1} e_{n+1} = \sum_{l=1}^{n} \beta_l e_l r_{n+1}
\]

for complex \(\alpha_k \) and \(\beta_l \), since any \(n+1 \) elements of \(R \) are linearly dependent. However,

\[
e_{n+1} (e_{n+1} r_{n+1}) = e_{n+1} r_{n+1} = \sum \alpha_k e_{n+1} e_k r_k = 0,
\]

\[(r_{n+1} e_{n+1}) e_{n+1} = r_{n+1} e_{n+1} = \sum \beta_l e_l e_{n+1} = 0.
\]

Hence there are at most \(2n \) primitive orthogonal idempotents \(e_j \) for which \(e_j R \neq 0 \) or \(Re_j \neq 0 \).

Let \(\{ u_{ij} \} \) be a basis for the matric algebras of \(A/R \). Choose a fixed set of \(e_{ij} \) constructed as in Lemma 2 to map on \(u_{ij} \), and number the set so that \(e_j = e_{jj}, j = 1, \cdots, s \), are all idempotents of the set \(\{e_{ij}\} \) which are not orthogonal to the radical. Define \(e = \sum_{j=1}^{s} e_j, B = eAe, C = (1 - e)A(1 - e), \) and \(D = e(1 - e) + (1 - e)Ae. \) Then \(A = B + C + D \).
is the usual two-sided Peirce decomposition of \(A \). Obviously \(BC = CB = 0 \).

If \(A \) is commutative, \(e(1 - e) = 0 \); so \(D = 0 \). Therefore \(A \) is a ring direct sum, \(A = B \oplus C \).

Note that if \(e_i = e_{ii} \) is an idempotent of \(\{ e_{ij} \} \) which is orthogonal to \(R \) and \(e_k = e_{kk} \) is an idempotent of \(\{ e_{kl} \} \) which maps on \(u_k = u_{kk} \) in the same matric algebra as \(u_{ii} \), then \(e_{kk} \) is also orthogonal to \(R \), since by Lemma 2 there exist \(e_{ik} \) and \(e_{ki} \) such that \(e_{ik}e_{ij}e_{ik} = e_{kk} \). Then \(e_{kk}R = e_{kk}e_{ii}e_{ik}R = 0 \), and \(Re_{kk} = Re_{kk}e_{ii}e_{ik} = 0 \).

Let \(u \) be the image of \(e \) under \(A \to A/R \). Then \(u \) is the sum \(u = I_1 + \cdots + I_n \) where \(I_m \) is the unit element of a matric algebra in \(A/R \). Now \(D \to u(A/R)(1 - u) + (1 - u)(A/R)u \). Since \(u \) commutes with \(A/R \), \(D \to 0 \). Therefore \(DC \subset R \). \(eAe/R \) is finite-dimensional and \(R \) is finite-dimensional. Therefore \(eAe \) is finite-dimensional. All idempotents of \(\{ e_{ij} \} \) not orthogonal to \(R \) are in \(B \); so all idempotents of \(\{ e_{ij} \} \) in \(C \) are orthogonal to \(R \). This completes Theorem 2.

The Principal Theorem of Wedderburn is known for finite-dimensional algebras, so \(B = S_1 + R_1 \). If it can be proved that \(C = S_2 + R_2 \), then it is proved for \(A \); for \(S = S_1 + S_2 \) is a subalgebra, and it follows from \(BC = CB = 0 \) that \(S_1 + S_2 \cong A/R \).

A \(C^* \)-algebra is a Banach algebra with a conjugate linear involution \(x \to x^* \) such that \((xx^*)^* \) exists for all \(x \) and \(\|xx^*\| = \|x\|^2 \). It is proved in [4] that a completely continuous \(C^* \)-algebra is the \(B(\infty) \) direct sum of finite-dimensional total matric algebras.

Theorem 3. If \(A/R \) is a completely continuous \(C^* \)-algebra and \(R \) is finite-dimensional, then \(A \) is a vector space direct sum, \(A = S + R \), of \(R \) and an algebra \(S \) isomorphic and homeomorphic to \(A/R \).

Theorem 2 applies to give \(A = B + C + D \). The remark above implies a continuous isomorphism between \(S_1 \) and \(B/R_1 \). By the closed graph theorem this is a homeomorphism; so it remains to prove the theorem only for the algebra \(C \) in which every idempotent of the set \(\{ e_{ij} \} \) is orthogonal to \(R \). It will thus be assumed that all idempotents in the set \(\{ e_{ij} \} \) are orthogonal to \(R \).

Lemma 3. All elements of \(\{ e_{ij} \} \) are orthogonal to \(R \).

Since \(e_{ij} = e_{ii}e_{ij} = e_{ij}e_{jj} \), and it has been assumed that all idempotents are orthogonal to \(R \), it is clear that all \(e_{ij} \) are.

Lemma 4. \(\|e_{ij}\| = \|u_{ij}\| = 1 \).

By [5, Theorem 10] and [4] the basis \(\{ u_{ij} \} \) may be chosen so that \(u_{ij}^* = u_{ji} \).
\[\|u_{i+1}u_{j+1}\| = \|u_{i+1}\| = \|u_{j+1}\| = 1. \]

\[\|u_{ij}\| = \|u_{ij}\| = \|u_{ij}\| = 1. \]

Hence \(\|u_{ii}\| = 1. \)

By definition,
\[\inf_{r \in \mathbb{R}} \|e_{ii} + r\| = \|u_{ii}\| = 1. \]

Let \(n \) be the dimension of \(R \). Then \(r^{n+1} = 0. \)

\[\|(e_{ii} + r)^{n+1}\| = \|e_{ii}^{n+1} + (n + 1)e_{ii}r + \cdots + r^{n+1}\| = \|e_{ii}\| \leq \|e_{ii} + r\|^{n+1}. \]

For any \(\varepsilon > 0 \) there is an \(r \) in \(R \) for which \(\|e_{ii} + r\|^n < 1 + \varepsilon. \) Hence \(\|e_{ii}\| \leq 1. \) Since \(\|e_{ii}\| \leq \|e_{ii}\|^2, \|e_{ii}\| = 1. \) Now
\[\inf_{r \in \mathbb{R}} \|e_{ii} + r\| = \|u_{ii}\| = 1, \]
\[\inf_{r \in \mathbb{R}} \|e_{ij} + r\| = \|u_{ij}\| = 1, \]
\[e_{ii} = (e_{ii} + r)e_{ii}, \]
\[\|e_{ii}\| \leq \|e_{ii} + r\| e_{ii} = \|e_{ii} + r\|, \]
\[e_{ij} = e_{ii}(e_{ij} + r), \]
\[\|e_{ij}\| \leq \|e_{ii}\| e_{ij} + r\| = \|e_{ij} + r\|. \]

This shows \(\|e_{ii}\| \leq 1 \) and \(\|e_{ij}\| \leq 1. \) The mapping \(e_{ij} \to u_{ij} \) depresses the norm.
\[\|e_{ii}\| \leq \|e_{ii}\| e_{ij} \| = 1. \]

Therefore \(\|e_{ij}\| = 1. \)

Proof of theorem. \(A/R \) is the \(B(\infty) \) direct sum of finite-dimensional total matric algebras \(M_i. \) By Lemma 4, \(A \) contains a subalgebra \(S_i \) equivalent to \(M_i. \) It will be shown that the map of any finite sum \(\sum_{i=1}^{n} N_i, N_i \) in \(S_i, \) into \(A/R \) is an isometry. Suppose \(N_i \to N_i \) in \(M_i, \) and \(I_i \) is the identity matrix of \(S_i. \) Since \(A/R \) is a \(C^* \)-algebra, \((I_iI_i^*)^* = I_1 = I_1I_1^*, \) \(\|I_1\| = \|I_1I_1^*\| = \|I_1\|^2; \) so \(\|I_1\| = 1. \) Furthermore
\[\|I_1 + \cdots + I_4\| = \|(I_1 + \cdots + I_i)(I_i^* + \cdots + I_4^*)\|^2, \]
\[\|I_1 + \cdots + I_4\| = \|I_1 + \cdots + I_4\|^2 = 1. \]

Define \(I = I_1 + \cdots + I_4. \) Then
\[\inf_{r \in R} \|I + r\| = \|I\| = 1. \]
\[\|(I + r)^{n+1}\| = \|I\| \leq \|I + r\|^{n+1}. \]

Hence \(\|I\| = 1, \) and similarly
\[
\inf_{r \in R} \left\| \sum_{i=1}^{t} N_i + r \right\| = \left\| \sum N_i \right\|
\]
\[
I(\sum N_i + r) = \sum N_i, \quad \left\| \sum N_i \right\| \leq \left\| I \right\| \left\| \sum N_i + r \right\| = \left\| \sum N_i + r \right\|, \quad \left\| \sum N_i \right\| \leq \left\| I \right\|
\]

Since the mapping \(A \to A/R \) depresses norms,
\[
\left\| \sum N_i \right\| = \left\| \sum N_i \right\|
\]

This shows that the mapping of any finite sum \(\sum_{i=1}^{t} N_i \) into \(A/R \) is an isometry. Let \(S \) be the \(B(\infty) \) direct sum of the subalgebras \(S_i \) of \(A \). Since \(A \) is complete, \(S \subseteq A \). A dense subset of \(S \) maps isometrically and isomorphically onto a dense subset of \(A/R \); therefore \(S \) is isomorphic and isometric to \(A/R \). This proves Theorem 3.

The theorem will now be proved for an algebra in which the mapping \(A \to A/R \) depresses the norm as little as possible.

Definition 3. An \(l_1 \) algebra is the commutative Banach algebra of all sums \(\sum \alpha_i u_i \), where \(\alpha_i \) are complex, \(u_i \) are a denumerable number of primitive orthogonal idempotents, and \(\left\| \sum \alpha_i u_i \right\| = \sum |\alpha_i| < \infty \).

Theorem 4. If \(A/R \) is an \(l_1 \) algebra and \(R \) is finite-dimensional, then \(A = S + R \) where \(S \) is a subalgebra of \(A \) isomorphic and homeomorphic to \(A/R \).

As in Theorem 3 it is sufficient to consider an algebra \(A \) in which each idempotent \(e_i \) is orthogonal to \(R \).

There exist pairwise orthogonal idempotents \(e_i \to u_i \) by Lemma 1. The proof of Lemma 4 shows \(\|e_i\| = 1 \). For any \(x = \sum \alpha_i e_i \) in \(A \),
\[
\|x\| \leq \left\| \sum \alpha_i e_i \right\| \leq \sum |\alpha_i| \|e_i\| = \sum |\alpha_i| = \left\| \sum \alpha_i u_i \right\|
\]
and the mapping \(A \to A/R \) decreases norms. Hence \(\|x\| = \sum |\alpha_i| \), that is, the mapping is an isometry on the completion \(S \) of the subalgebra of \(A \) generated by the \(e_i \). Therefore \(S \) is isometric and isomorphic to \(A/R \) and \(A = S + R \). This completes the proof.

In all the previous theorems the completion of the algebra generated by elements mapping on basis elements of \(A/R \) is disjoint from the radical. The following theorem shows this property is the essential one.

Theorem 5. Suppose \(A \) is a Banach algebra, that the radical \(R \) is finite-dimensional, that \(A/R \) is the \(B(\infty) \) sum of finite-dimensional total matric algebras, that \(S \) is the \(B(\infty) \) sum in \(A \) of the matric algebras isomorphic to those of \(A/R \), and that \(S \cap R = 0 \). Then \(S \) is isomorphic and homeomorphic to \(A/R \), and \(A \) is the vector space direct sum \(S + R \).
S is complete and R is complete since the radical of a Banach algebra is closed. R is finite-dimensional so $S + R$ is complete. Also $(S + R)/R$ is complete; hence $A \to A/R$ maps $S + R$ onto A/R. $S \cap R = 0$ implies $(S + R)/R = S$. Therefore $S \cong A/R$. The mapping $S \to A/R$ is 1-1 and continuous. By the closed graph theorem, S is homeomorphic to A/R. Suppose a in A maps on $[a]$ in A/R. Then there is an s in S which maps on $[a]$. Thus $a - s = r$ in R. Every $a = s + r$. Since S is semi-simple, $A = S + R$.

REFERENCES

South Bend, Ind.