A CHARACTERIZATION OF SIMPLY CONNECTED
CLOSED ARCWISE CONVEX SETS

F. A. VALENTINE

Let S be a set of points in the Euclidean plane E_2. It is our purpose to establish a necessary and sufficient condition that a simply connected\(^1\) closed set S be arcwise convex. In order to do this precisely, the following notations and definitions are used.

Notation. The line determined by two distinct points x and y in E_2 is denoted by $L(x, y)$. We designate the open line segment joining x and y by xy, and the corresponding closed segment by $[xy]$. The two closed half-planes having $L(x, y)$ as a common boundary are designated by $R_1(x, y)$ and $R_2(x, y)$. The boundary of a set K is represented by $B(K)$, and $H(K)$ denotes the convex hull of K. The complement of S is denoted by $C(S)$.

Definition 1. A set $S \subseteq E_2$ is said to be unilaterally connected if, for each pair of distinct points x and y in S, there exists a continuum\(^2\) $S \subseteq S$ which contains x and y, and which lies in one of the closed half-planes determined by $L(x, y)$.

Definition 2. A set $S \subseteq E_2$ is said to be arcwise convex if each pair of points in S can be joined by a convex arc lying in S. (A convex arc is one which is contained in the boundary of its convex hull.)

In a previous paper \([1]\)\(^3\) the author studied the complements of both arcwise convex sets and unilaterally connected sets. The theorem below establishes another intimate connection between these two concepts.

I am indebted to the referee for the following lemma which simplifies the proof of the theorem.

Lemma. In order that a simply connected, connected, closed set $S \subseteq E_2$ be unilaterally connected, it is necessary that for each line L, all of the bounded components of $C(S) - L \cdot C(S)$ lie on the same side of L.

Proof. Suppose L is a straight line for which a bounded component D of $C(S) - L \cdot C(S)$ exists. Let $[xy]$ be the minimal closed interval containing $L \cdot B(D)$. Let T be a continuum in S which con-

\[^1\] A set $S \subseteq E_2$ is simply connected if each component of its complement is unbounded.

\[^2\] A continuum in E_2 is a bounded, closed, connected set.

\[^3\] Number in brackets refers to the reference at the end of the paper.
SIMPLY CONNECTED CLOSED ARCWISE CONVEX SETS

...contains \(x + y \), and which lies in a closed half-plane, denoted by \(R_1(x, y) \), determined by \(L \). There exists a circular circumference \(Q \) which encloses \(T + [xy] + B(D) \). Since \(x + y \subset T \), no two arcs which intersect \(Q \) but not \(T \) can abut \([xy]\) from opposite sides. Let \(A \) be an arc in \(C(S) \) irreducible from \([xy]\) to \(Q \). (By definition, \(A \) contains no proper subarc containing points of \([xy]\) and points of \(Q \).) Then \(A \) abuts on \([xy]\), and it also contains an arc in \(R_2(x, y) \) abutting on \([xy]\). Moreover, it is clear that \(A \cdot D = 0 \).

Suppose that \(D \subset R_2(x, y) \). Let \(Q_x \) and \(Q_y \) denote closed circular disks centered on \(x \) and \(y \) respectively, such that \((Q_x + Q_y) \cap (A + Q) = 0\). There exists an arc \(E \subset D + B(Q_x) + B(Q_y) \), having only its end points, \(w \) and \(z \), in \(L \cdot xy \), such that \(A \cdot xy \) is between \(w \) and \(z \) on \(L \). Then \(E + wz \) is a simple closed curve enclosed by \(Q \) and lying in \(R_2(x, y) \). Since \(A \) abuts on \([xy]\) via \(R_1(x, y) \), the above implies that \(A - A \cdot xy \) lies within the region bounded by \(E + wz \). This is a contradiction, so that we have \(D \subset R_1(x, y) \).

If \(U \) is any other bounded component of \(C(S) - L \cdot C(S) \), let \([pq]\) denote the minimal closed interval of \(L \) containing \(L \cdot B(U) \). Each pair of the four points \(x, y, p, q \) (whether distinct or not) is contained in a continuum in \(S \) lying in \(R_1(x, y) \) or in \(R_2(x, y) \). From this fact it follows readily that there exists a continuum \(T' \subset S \) which contains \(x + y + p + q \), and which lies in \(R_1(x, y) \) or in \(R_2(x, y) \). From the above paragraph we must have \(T' \subset R_1(x, y) \) since \(D \subset R_1(x, y) \). Hence, we must also have \(U \subset R_1(x, y) \). This completes the proof.

Theorem. A necessary and sufficient condition that a simply connected closed set \(S \subset E_2 \) be arcwise convex is that it be unilaterally connected.

Proof. It is the sufficiency which requires proof, since the necessity is obvious. Choose \(x \in S, y \in S \). If \(xy \subset S \), then \(x \) and \(y \) can be joined by a convex arc in \(S \). Hence, suppose \(xy \subset S \). By hypothesis, there exists a continuum \(S_1 \subset S \) containing \(x \) and \(y \) and lying in \(R_1(x, y) \) or in \(R_2(x, y) \). Suppose \(S_1 \subset R_1(x, y) \). Choose any point \(\alpha \in xy \cdot C(S) \). Define \(K(\alpha) \) to be that component of \(C(S) \cdot R_1(x, y) \) which contains \(\alpha \). Since \(S_1 \) is a bounded closed connected set in \(R_1(x, y) \), and since we can establish an order \(x < \alpha < y \) on \(L(x, y) \), we have \(K(\alpha) \subset H(S_1) \).

Hence the set sum \(\sum K(\alpha) \) (\(\alpha \) ranges over \(C(S) \cdot xy \)) is bounded. Define the set sum \(T \) to be

\[
T = x + y + \sum K(\alpha) \quad (\alpha \text{ ranges over } C(S) \cdot xy).
\]

It follows with the help of the preceding lemma that \(C = B(H(T)) - xy \) is a convex arc lying in \(S \). This proves the theorem.
The above characterization does not apply to sets which are not simply connected. For instance, the set S consisting of the circumference of a circle C plus a single outward normal to C (segment or half-line) is unilaterally connected but not arcwise convex. A nontrivial characterization of non-simply connected arcwise convex sets appears to be difficult to determine.

Reference