A CHARACTERIZATION OF SIMPLY CONNECTED CLOSED ARCWISE CONVEX SETS

F. A. VALENTINE

Let \(S \) be a set of points in the Euclidean plane \(E_2 \). It is our purpose to establish a necessary and sufficient condition that a simply connected\(^1\) closed set \(S \) be arcwise convex. In order to do this precisely, the following notations and definitions are used.

Notation. The line determined by two distinct points \(x \) and \(y \) in \(E_2 \) is denoted by \(L(x, y) \). We designate the open line segment joining \(x \) and \(y \) by \(xy \), and the corresponding closed segment by \([xy]\)\. The two closed half-planes having \(L(x, y) \) as a common boundary are designated by \(R_1(x, y) \) and \(R_2(x, y) \). The boundary of a set \(K \) is represented by \(B(K) \), and \(H(K) \) denotes the convex hull of \(K \). The complement of \(S \) is denoted by \(C(S) \).

Definition 1. A set \(S \subseteq E_2 \) is said to be unilaterally connected if, for each pair of distinct points \(x \) and \(y \) in \(S \), there exists a continuum\(^2\) \(S_1 \subseteq S \) which contains \(x \) and \(y \), and which lies in one of the closed half-planes determined by \(L(x, y) \).

Definition 2. A set \(S \subseteq E_2 \) is said to be arcwise convex if each pair of points in \(S \) can be joined by a convex arc lying in \(S \). (A convex arc is one which is contained in the boundary of its convex hull.)

In a previous paper \[1\]\(^3\) the author studied the complements of both arcwise convex sets and unilaterally connected sets. The theorem below establishes another intimate connection between these two concepts.

I am indebted to the referee for the following lemma which simplifies the proof of the theorem.

Lemma. In order that a simply connected, connected, closed set \(S \subseteq E_2 \) be unilaterally connected, it is necessary that for each line \(L \), all of the bounded components of \(C(S) - L \cdot C(S) \) lie on the same side of \(L \).

Proof. Suppose \(L \) is a straight line for which a bounded component \(D \) of \(C(S) - L \cdot C(S) \) exists. Let \([xy]\) be the minimal closed interval containing \(L \cdot B(D) \). Let \(T \) be a continuum in \(S \) which con-

\(^1\) A set \(S \subseteq E_2 \) is simply connected if each component of its complement is unbounded.
\(^2\) A continuum in \(E_2 \) is a bounded, closed, connected set.
\(^3\) Number in brackets refers to the reference at the end of the paper.

Presented to the Society, November 25, 1950; received by the editors March 31, 1950 and, in revised form, October 1, 1950.
SIMPLY CONNECTED CLOSED ARCWISE CONVEX SETS 779

tains \(x+y\), and which lies in a closed half-plane, denoted by \(R_1(x, y)\),
determined by \(L\). There exists a circular circumference \(Q\) which en-
closes \(T + [xy] + B(D)\). Since \(x+y \subseteq T\), no two arcs which intersect \(Q\)
but not \(T\) can abut \([xy]\) from opposite sides. Let \(A\) be an arc in \(C(S)\)
irreducible from \([xy]\) to \(Q\). (By definition, \(A\) contains no proper
subarc containing points of \([xy]\) and points of \(Q\).) Then \(A\) abuts on
\([xy]\), and it also contains an arc in \(R_2(x, y)\) abutting on \([xy]\). Moreover,
it is clear that \(A \cdot D = 0\).

Suppose that \(D \subseteq R_2(x, y)\). Let \(Q_x\) and \(Q_y\) denote closed circular
disks centered on \(x\) and \(y\) respectively, such that \((Q_x + Q_y) \cap (A + Q) = 0\).
There exists an arc \(E \subseteq D + B(Q_x) + B(Q_y)\), having only its end
points, \(w\) and \(z\), in \(L \cdot xy\), such that \(A \cdot xy\) is between \(w\) and \(z\) on \(L\).
Then \(E + wz\) is a simple closed curve enclosed by \(Q\) and lying in
\(R_2(x, y)\). Since \(A\) abuts on \([xy]\) via \(R_1(x, y)\), the above implies that
\(A - A \cdot xy\) lies within the region bounded by \(E + wz\). This is a con-
tradiction, so that we have \(D \subseteq R_1(x, y)\).

If \(U\) is any other bounded component of \(C(S) - L \cdot C(S)\), let \([pq]\)
denote the minimal closed interval of \(L\) containing \(L \cdot B(U)\). Each
pair of the four points \(x, y, p, q\) (whether distinct or not) is contained
in a continuum in \(S\) lying in \(R_1(x, y)\) or in \(R_2(x, y)\). From this fact it
follows readily that there exists a continuum \(T' \subseteq S\) which contains
\(x+y+p+q\), and which lies in \(R_1(x, y)\) or in \(R_2(x, y)\). From the above
paragraph we must have \(T' \subseteq R_1(x, y)\) since \(D \subseteq R_1(x, y)\). Hence, we
must also have \(U \subseteq R_1(x, y)\). This completes the proof.

Theorem. A necessary and sufficient condition that a simply con-
nected closed set \(S \subseteq \mathbb{E}_2\) be arcwise convex is that it be unilaterally con-
nected.

Proof. It is the sufficiency which requires proof, since the necessity
is obvious. Choose \(x \in S, y \in S\). If \(xy \subseteq S\), then \(x\) and \(y\) can be joined
by a convex arc in \(S\). Hence, suppose \(xy \notin S\). By hypothesis, there
exists a continuum \(S_1 \subseteq S\) containing \(x\) and \(y\) and lying in \(R_1(x, y)\) or
in \(R_2(x, y)\). Suppose \(S_1 \subseteq R_1(x, y)\). Choose any point \(\alpha \in xy \cdot C(S)\). De-
fine \(K(\alpha)\) to be that component of \(C(S) \cdot R_1(x, y)\) which contains \(\alpha\).
Since \(S_1\) is a bounded closed connected set in \(R_1(x, y)\), and since we
can establish an order \(x < \alpha < y\) on \(L(x, y)\), we have \(K(\alpha) \subseteq H(S_1)\).
Hence the set sum \(\sum K(\alpha) (\alpha \text{ ranges over } C(S) \cdot xy)\) is bounded. De-
finite the set sum \(T\) to be

\[
T = x + y + \sum K(\alpha) \quad (\alpha \text{ ranges over } C(S) \cdot xy).
\]

It follows with the help of the preceding lemma that \(C = B(H(T)) - xy\)
is a convex arc lying in \(S\). This proves the theorem.
The above characterization does not apply to sets which are not simply connected. For instance, the set S consisting of the circumference of a circle C plus a single outward normal to C (segment or half-line) is unilaterally connected but not arcwise convex. A nontrivial characterization of non-simply connected arcwise convex sets appears to be difficult to determine.

Reference

University of California, Los Angeles