CERTAIN CONGRUENCES ON QUASIGROUPS

H. A. THURSTON

1. Using the ideas of [1], we define a lattice-isomorphism between the reversible congruences on a quasigroup and certain congruences on its group of translations. This may be used to get certain properties of the quasigroup congruences from those of the translation-group congruences; for example, it gives a new proof that reversible congruences on a quasigroup are permutable (a proof of this has been given in [3]).

Notation. A relation θ in a set S is a set of ordered 2-sets of elements of S. If $(a, b) \in \theta$, we say “a is in the relation θ to b”; the shorter notation $a\theta b$ will sometimes be used for this. For example, a mapping $x \to x\theta$ may be taken to be the set of all $(x, x\theta)$ and is then a relation in this sense.

θ^{-1} is the set of all (a, b) for which $b\theta a$.
$\theta\phi$ is the set of all (a, b) for which $a\theta c\phi b$ for some c.
Clearly θ^{-1} and $\theta\phi$ are relations in S if θ and ϕ are.

If ϕ is an equivalence (that is, if $\phi^{-1} = \phi \phi = \phi$), then ϕ is the set of all elements in the relation ϕ to a.

2. Given a quasigroup whose set of elements is S it is possible to give definitions of two operations / and \: a/b is the x for which $x \cdot b = a$.
$a\backslash b$ is the x for which $a \cdot x = b$.

Clearly

\[(1) \quad (a/b) \cdot b = a, \quad a \cdot (a \backslash b) = b, \quad (a/b) / b = a, \quad a \backslash (a \cdot b) = b.\]

On the other hand, if we have an algebra E whose set of elements is S, whose operations are \cdot, /, and \, and for which (1) is true, then the algebra S with the operation \cdot and elements S is a quasigroup.

E is equationally defined: it might possibly be named an equasigroup.

3. Definition. A congruence ϕ on a quasigroup is reversible if (i) $a\phi b$ whenever $a\phi b c \phi d c$ and (ii) $a\phi b$ whenever $a\phi c b$. Clearly a congruence on S is reversible if and only if it is a congruence on E. Equally clearly, S/ϕ is a quasigroup under the Kronecker operation \cdot if and only if ϕ is reversible. (The reversible property is needed for cancellation to be possible.)

Received by the editors November 6, 1950 and, in revised form, February 27, 1951.

1 Numbers in brackets refer to the bibliography at the end of the paper.
2 The notation is from [2].
4. **Definitions.** \(\rho_s \) is the mapping \(x \mapsto x \cdot a \), and \(\lambda_s \) is \(x \mapsto a \cdot x \). The *translator*, \(\Sigma \), of \(S \) (or of \(E \)) is the group generated by all \(\rho_s \) and \(\lambda_s \) for all \(a \) of \(S \), and is a permutation group on \(S \).

5. Now we give a relation between congruences on \(E \) and congruences on \(\Sigma \). Clearly an equivalence \(q \) on \(S \) is a congruence on \(E \) if and only if \(x \sigma y \) whenever \(x \alpha y \) and \(\sigma \in \Sigma \); that is, if and only if \(\sigma^{-1} q \sigma \subseteq q \) for every \(\sigma \) of \(\Sigma \). From now on the letter \(q \) will be used only for congruences on \(E \).

Definition. \(q^t \) is the relation in \(\Sigma \) for which \(\theta q^t \phi \) if and only if \(\theta q \phi \).

If \(\sigma \in \Sigma \), then \(x \sigma \rightarrow (x \sigma)q \) is a mapping, \(\delta \) say, of \(S/q \) into \(S/q \). For if \(xq = yq \), then \(x \sigma y \). Therefore \(x \sigma y \) and so \(x \sigma q = y \sigma q \). The mapping \(\sigma \rightarrow \delta \) is a homomorphism (that is, \(\sigma \rightarrow \delta \tau \)) and \(q^t \) is its kernel. Therefore \(q^t \) is a congruence on \(\Sigma \).

Note. Clearly \(q^t \supseteq p^t \) if \(q \supseteq p \).

6. From now on the letter \(p \) will be used only for congruences on \(\Sigma \).

Definition. \(p^t \) is \(U \theta^{-1} \phi \) (over all \(\theta, \phi \) for which \(\theta \phi \)).

It is not hard to see that \(p^t \) is a congruence on \(E \). For (i) clearly \(p^t = (p^t)^{-1} \). (ii) Let \((a, b) \in (p^t)^2 \). Then, for some \(c, \ a p^t c b \). Therefore \(a \theta^{-1} \phi c \) and \(c \psi^{-1} b \), where \(\theta \phi \) and \(\psi \chi \). Then \(a \theta^{-1} \phi \chi = c = b \chi^{-1} \psi \) and so \((a, b) \in (\theta \psi^{-1} \phi; \chi = (\theta^{-1} \phi)^{-1} \psi^{-1} \chi) \). But \(\theta \phi \psi^{-1} \phi = \psi^{-1} \psi \psi^{-1} \chi \). Therefore \(a p^t b \), and so \((p^t)^2 \subseteq p^t \).

(iii) Let \((a, b) \in \sigma^{-1} p^t \sigma \) where \(\sigma \in \Sigma \). Then
\[
(a, b) \subseteq \sigma^{-1} \theta^{-1} \phi \sigma \quad \text{(where } \theta \phi) \\
= (\theta \sigma)^{-1} (\phi \sigma) \quad \text{(where } (\theta \sigma) p (\phi \sigma)) \subseteq p^t.
\]

Note. Clearly \(p^t \supseteq q^t \) if \(p \supseteq q \).

7. \(p \supseteq q^t \) if and only if \(p^t \subseteq q \). For, by the definition of \(q^t \), \(p \supseteq q^t \) if and only if (i) \(\theta^{-1} \phi \subseteq q \) whenever \(\theta \phi \). And (i) is true, by the definition of \(p^t \), if and only if \(p^t \subseteq q \). Then if \(p = q^t \) we have \(p^t \subseteq q \), that is \(q^t \subseteq q \). On the other hand, if \(a \phi b \), let \(u \) be any element of \(S \) and put \(a = u \lambda_w \), \(b = u \lambda_u \). Then \(vqw \) (because \(q \) is reversible), and so, for any \(x \) of \(S \), \(x \lambda_q x \lambda_w \). Therefore \(\lambda_q \lambda_w \subseteq q \), and so \(\lambda_q \lambda_w \subseteq q \). But \((a, b) = (u \lambda_w, u \lambda_u) \subseteq \lambda_q \lambda_w \). Therefore \(aq^t b \). Therefore \(q^t \supseteq q \) and so \(q = q^t \).

Therefore \(\dagger \) is a one-to-one mapping of the set of all congruences on \(E \) into the set of congruences on \(\Sigma \), and \(\dagger \) is \((\dagger)^{-1} \). By notes 5 and 6, this mapping is an isomorphism between the lattice of congruences on \(E \) and a sublattice of the lattice of congruences on \(\Sigma \).

8. Any two congruences on \(E \) are permutable. Let \(p \) and \(r \) be any
two congruences on \(E \). Any congruence on a group is given by a normal subgroup: let the congruences \(\eta \) and \(\tau \) be given by subgroups \(\Pi \) and \(P \). Then, for every \(a \) of \(S \), \(ap = a\Pi \). For if \(b \in ap \), let \(u \), \(v \), and \(w \) be as in §7. Then \(b = a\lambda_1^{-1}\lambda_v \) where \(\lambda_1^{-1}\lambda_v \in \Pi \). Therefore \(ap \subseteq a\Pi \). On the other hand, if \(b \in a\Pi \), then \(b = a\theta \) where \(\theta \in \Pi \) and so \(\theta \eta \). Then \(ab = a\eta \); that is, \(b\eta \), and so \(b \in ap \). Therefore \(a\Pi \subseteq ap \), and so \(a\Pi = ap \). In the same way, \(a\Pi = ap \).

Now, if \(aprb \), then for some \(c \), \(a \in c\Pi \) and \(c \in b\tau \). Therefore \(a \in b\Pi \tau = b\Pi \). We may now let \(a = b\phi \) where \(\theta \subseteq \Pi \) and \(\phi \subseteq P \). Then \(a \tau b \theta \). But \(b\eta b \theta \). Therefore \(aprb \). Therefore \(\eta \tau \subseteq \eta \tau \); that is, \(\tau \) and \(\tau \) are permutable.

9. An important point about this is that proofs have been given (for example, in [4, pp. 87–89]) of the Schreier-Zassenhaus theorem for algebras all of whose congruences are permutable and which have a one-element subalgebra. An equasigroup has not, in general, a one-element subalgebra, but the theorem is true in this form:

If \(E \), \(A_1 \), \(\ldots \), \(A_m \) and \(E \), \(B_1 \), \(\ldots \), \(B_n \) are normal series of an equasigroup \(E \), and if \(A_m \cap B_n \neq \emptyset \), then the series have isomorphic refinements.

BIBLIOGRAPHY

UNIVERSITY OF BRISTOL