A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points
HTML articles powered by AMS MathViewer
- by I. L. Glicksberg
- Proc. Amer. Math. Soc. 3 (1952), 170-174
- DOI: https://doi.org/10.1090/S0002-9939-1952-0046638-5
- PDF | Request permission
References
- Garrett Birkhoff, Lattice theory, American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1961. Revised ed. MR 0123490
- H. F. Bohnenblust and S. Karlin, On a theorem of Ville, Contributions to the Theory of Games, Annals of Mathematics Studies, no. 24, Princeton University Press, Princeton, N.J., 1950, pp. 155–160. MR 0041415
- Shizuo Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. 8 (1941), 457–459. MR 4776
- John F. Nash Jr., Equilibrium points in $n$-person games, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 48–49. MR 31701, DOI 10.1073/pnas.36.1.48
- John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, N. J., 1947. 2d ed. MR 0021298
- John V. Wehausen, Transformations in linear topological spaces, Duke Math. J. 4 (1938), no. 1, 157–169. MR 1546041, DOI 10.1215/S0012-7094-38-00412-0
- A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), no. 1, 767–776 (German). MR 1513031, DOI 10.1007/BF01472256
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 3 (1952), 170-174
- MSC: Primary 56.0X
- DOI: https://doi.org/10.1090/S0002-9939-1952-0046638-5
- MathSciNet review: 0046638