A THEOREM ON CONJUGATE NETS IN PROJECTIVE HYPERSPACE

P. O. BELL

A theorem proved by C. C. Hsiung in a recent paper $[1]^1$ may be stated as follows: In a linear space S_n of $n \ (\geq 3)$ dimensions let N_x be a conjugate net and π be a fixed hyperplane; then the points M, \overline{M} of intersection of the fixed hyperplane π and the two tangents at a point xof the net N_x describe two conjugate nets N_M , $N_{\overline{M}}$ in the hyperplane π , respectively, and one of the two nets N_M , $N_{\overline{M}}$ is a Laplace transformed net of the other. The purpose of this note is to prove, in an elementary manner, a general theorem of which the above stated theorem of Hsiung is a specialization. The statement of the theorem follows:

In a linear space S_n of $n \ (\geq 3)$ dimensions let N_x be a conjugate (parametric) net. Let M, \overline{M} be points on the u-, v-tangents at x of the net N_x , respectively, which describe two nets N_M , $N_{\overline{M}}$ having the property that the tangent plane of $N_M \ (N_{\overline{M}})$ at $M \ (\overline{M})$ passes through $\overline{M} \ (M)$. The nets N_M , $N_{\overline{M}}$ are conjugate nets and each one of them is a Laplace transformed net of the other one.

For the proof let us observe first that since N_x is a conjugate net, the points M, \overline{M} , $\partial \overline{M}/\partial u$, and $\partial M/\partial v$ lie in the tangent plane to N_x at x; this plane is therefore determined by the points M, $\partial \overline{M}/\partial u$, $\partial M/\partial v$. The conditions that the tangent planes to N_M and $N_{\overline{M}}$ at Mand \overline{M} , respectively, pass through the points \overline{M} and M are equivalent to the conditions that the matrices

$$\left(M, \begin{array}{cc} \frac{\partial M}{\partial u}, & \frac{\partial M}{\partial v}, \end{array}\right), \qquad \left(\overline{M}, \begin{array}{cc} \frac{\partial \overline{M}}{\partial u}, & \frac{\partial \overline{M}}{\partial v}, \end{array}\right)$$

be of rank three. It follows that $\partial \overline{M}/\partial u$ and $\partial M/\partial v$ are expressible by linear relations

(1)
$$\frac{\partial M}{\partial u} = a\overline{M} + bM, \qquad \frac{\partial M}{\partial v} = \alpha M + \beta \overline{M},$$

since the tangent planes to N_M and N_M at M and \overline{M} cannot coincide with the tangent plane to N_x at a generic (nonplanar) point x of N_x . From the form of relations (1) it follows that each of the points M, \overline{M} satisfies an equation of Laplace, and, therefore, each of the nets N_M , $N_{\overline{M}}$ is a conjugate net. Furthermore, the point \overline{M} is the

Received by the editors July 28, 1951.

¹ Numbers in brackets refer to the references at the end of the note.

first Laplace transformed point of M with respect to the net N_M and the point M is the minus-first Laplace transformed point of \overline{M} with respect to the net $N_{\overline{M}}$. These additional facts are easily established by use of equations (1) in verifying that \overline{M} (M) is the point on the tangent to the v (u)-curve of N_M ($N_{\overline{M}}$) at M (\overline{M}) at which this line touches the edge of regression of the developable surface which it generates as the point M (\overline{M}) varies on the u (v)-curve of N_M ($N_{\overline{M}}$). For example, the point on the line $M\overline{M}$ where this line touches the edge of regression of the developable which it generates as M varies over the u-curve of N_M is the point $\sigma = \overline{M} + \mu M$ in which μ is determined so that the point $\partial \sigma / \partial u$ lies on the line $M\overline{M}$; that is to say, a linear relation

(2)
$$\frac{\partial \sigma}{\partial u} \equiv \frac{\partial \overline{M}}{\partial u} + \mu \frac{\partial M}{\partial u} + M \frac{\partial \mu}{\partial u} = cM + d\overline{M}$$

must be fulfilled. On substituting in (2) for $\partial \overline{M}/\partial u$ the right member of the first equation of (1) the resulting equation is

$$a\overline{M} + \left(b + \frac{\partial\mu}{\partial u}\right)M + \mu \frac{\partial M}{\partial u} = cM + d\overline{M}.$$

Since $\partial M/\partial u$ is linearly independent of M, \overline{M} (the tangents to N_M being assumed distinct at M), μ must vanish. Hence the required point σ is found to be the point \overline{M} .

To show that the theorem of Hsiung is a specialization of this theorem the procedure is as follows. The intersections of the *u*- and *v*-tangents to N_x at *x* with the fixed hyperplane are the points *M* and \overline{M} , respectively. Since N_x is a conjugate net, the *u*-tangent at *x* generates a developable as *x* varies over the *v*-curve. Hence, the tangent line at *M* to the *v*-curve of N_M must lie in the tangent plane to N_x at *x*: that is to say, this tangent line is the line $M\overline{M}$ of intersection of the tangent plane to N_x at *x* and the hyperplane π . Similarly, the tangent at \overline{M} to the *u*-curve of $N_{\overline{M}}$ passes through *M*. The conditions of the general theorem are therefore satisfied and the conclusion can be drawn.

Hsiung's theorem for n=3 is an analogue of a theorem of B. Su [2, p. 372] in which the conclusion is the same but the given net N_x is assumed to be an asymptotic net. If in the hypothesis of the general theorem proved in this note the net N_x is assumed to be an asymptotic net instead of a conjugate net, the same conclusion holds, and the theorem which results is a generalization of the theorem of Su. In the proof of this theorem, the details of which are omitted, the points $\partial M/\partial u$ and $\partial \overline{M}/\partial v$ are found to lie on the line $M\overline{M}$ because: (1) the osculating planes of the *u*- and *v*-curves of the net N_x coincide with the tangent plane to N_x at *x*, respectively, and (2) the tangent plane at $M(\overline{M})$ to the net $N_M(N_{\overline{M}})$ (assumed distinct from the tangent plane to N_x at *x*) passes through the point $\overline{M}(M)$.

References

1. C. C. Hsiung, A general theory of conjugate nets in projective hyperspace, Trans. Amer. Math. Soc. vol. 70 (1951) pp. 312-322.

2. B. Su, On the surfaces whose Wilczynski quadrics all touch a fixed plane, Revista de la Universidad Nacional de Tucumán (A) vol. 5 (1946) pp. 363-373.

THE UNIVERSITY OF KANSAS