1. The theorem. Let \(k \) be an algebraically closed field. Let \(A = \{\alpha\} \) be an indexing set. Let \(\mathcal{O} = k[\alpha] \) be the polynomial ring generated over \(k \) by an indexed set of variables \(\alpha, \alpha \in A \). Let \(\mathfrak{a} \) be an ideal of \(\mathcal{O} \). A zero of \(\mathfrak{a} \) is a set \((\xi_a) \) of elements \(\xi_a \) in some extension field of \(k \) such that \(f(\xi_a) = 0 \) for all \(f \in \mathfrak{a} \). (Of course, a polynomial \(f \) involves only a finite number of the variables \(\alpha \).) A zero of \(\mathfrak{a} \) will be called algebraic if all \(\xi_a \) lie in \(k \). The set of all algebraic zeros of an ideal \(\mathfrak{a} \) will be called the variety defined by \(\mathfrak{a} \).

The Hilbert Nullstellensatz is in general not valid if \(A \) is an infinite set. We shall prove however the following theorem:

Theorem. The following three statements are equivalent:

1. If \(\mathfrak{a} \) is an ideal of \(\mathcal{O} \) and \(f\mathfrak{a} \) vanishes on the variety defined by \(\mathfrak{a} \), then \(f \in \mathfrak{a} \) for some integer \(p \).
2. If \(\mathfrak{a} \) is an ideal of \(\mathcal{O} \) and \(\mathfrak{a} \neq \mathcal{O} \), then \(\mathfrak{a} \) has an algebraic zero.
3. A ring extension \(k[\xi_a] \) by elements \(\xi_a \) in some extension field of \(k \) is a field if and only if all \(\xi_a \) lie in \(k \).

Furthermore the three statements hold if and only if one of the following two conditions is satisfied:

1. \(A \) is a finite set.
2. Let \(A \) have cardinality \(\alpha \). Let the transcendence degree of \(k \) over the prime field have cardinality \(\beta \). Then \(\alpha < \beta \).

The above two conditions can be replaced by the single condition that the cardinality of the field \(k \) itself should be greater than the cardinality of \(A \). However, our proof will apply to the case in which \(A \) is finite only under condition (ii) if we interpret \(\alpha < \beta \) to mean that \(\beta \) is infinite.

It is possible to interpret our theorem geometrically. Let \(k \) and \(A \) satisfy one of our two conditions. Let \(V_r \) be a collection of varieties in the space of \(k[\alpha] \). If the \(V_r \) have the finite intersection property (that is, finite intersections \(V_{r_1} \cap \cdots \cap V_{r_n} \) are never empty), then \(\bigcap V_r \) is not empty. This follows immediately from the fact that the union of all ideals \(\mathfrak{a} \), defining \(V_r \), is not the ring \(\mathfrak{a} \) and has therefore an algebraic zero which lies in all varieties \(V_r \). If neither (i) nor (ii) is satisfied, then the intersection of all \(V_r \) may be empty.

Received by the editors October 2, 1951.

Professor I. Kaplansky has informed me that he has obtained the theorem independently. His proof is different from the one presented here, however.
When A is a finite set, the above is the usual Hilbert theorem and is well known. A proof was given recently by Zariski [1] to whom Statement 3 is due.

2. The proof. We first prove the equivalence of the three statements.

$S1 \Rightarrow S2$. Let \mathfrak{a} be an ideal without algebraic zero. Then the polynomial 1 vanishes (vacuously) on the variety of \mathfrak{a}. Hence

\[1 \in \mathfrak{a} \text{ and } \mathfrak{a} = \mathfrak{o}. \]

$S2 \Rightarrow S1$. We reproduce here a well known argument due to Rabinowitsch. The statement is well known if A is a finite set, so we shall assume that A is an infinite set. Let \mathfrak{a} be an ideal of \mathfrak{o} and let f vanish on the variety of \mathfrak{a}. Let t be a new variable. In the ring $\mathfrak{o}[t]$ we consider the ideal $(\mathfrak{a}, 1-tf)$. The ring $\mathfrak{o}[t]$ is isomorphic to \mathfrak{o}, and $(\mathfrak{a}, 1-tf)$ has no algebraic zero. Hence by $S2$ there is an expression of the type

\[A_1f_1 + \cdots + A_rf_r + A(1-tf) = 1 \]

where $A_i, A \in \mathfrak{o}[t]$ and $f_1, \ldots, f_r \in \mathfrak{a}$. We may now let $t=1/f$ and clear denominators to give $f^p \in \mathfrak{a}$ for some integer p.

$S2 \Rightarrow S3$. Let $k[x_a] \rightarrow k[\xi_a]$ so \mathfrak{p} is a maximal ideal. \mathfrak{p} has an algebraic zero (η_a) and is the kernel of the map $k[x_a] \rightarrow k[\eta_a]$. Hence

\[(x_a - \eta_a) \in \mathfrak{p} \text{ (all } a), \]

and therefore $\xi_a = \eta_a$ lies in k.

$S3 \Rightarrow S2$. Let \mathfrak{a} be an ideal $\neq \mathfrak{o}$. Let \mathfrak{p} be a maximal ideal containing \mathfrak{a}. Then $\mathfrak{o}/\mathfrak{p}$ is a field $k[\xi_a]$ and all ξ_a lie in k. It follows that (ξ_a) is an algebraic zero of \mathfrak{a}.

We shall now prove that the three statements hold precisely under the above-mentioned conditions. We assume familiarity with cardinal arithmetic, and the following fact: If a field F has transcendence degree b over the prime field, and b is not finite, then the set consisting of all elements in the algebraic closure of F has cardinality b also.

If A is a finite set, the theorem is well known. We suppose that A is not finite and that $a < b$. We shall prove that $S2$ holds, that is: A proper ideal \mathfrak{a} has an algebraic zero.

Lemma. If \mathfrak{a} is an ideal of \mathfrak{o}, then \mathfrak{a} has a basis consisting of at most a elements.
Proof. We consider the set of all subrings \(k[x_{a_1}, \ldots, x_{a_r}] \) generated by a finite number of indeterminates. This set has cardinality \(a \), and we may index it by \(A \) again. Let these rings be denoted by \(\sigma_a \) and let \(a_a = a \cap \sigma_a \). Then \(a = \cup_a a_a \). Each \(a_a \) has a finite basis and therefore the union of these basis elements is a basis for \(a \) having cardinality at most \(a \), as was to be shown.

Let \(a \) be a proper ideal. Let \(p \) be a prime ideal containing \(a \). (A maximal such ideal will always exist by Zorn's Lemma.) It has a basis of at most \(a \) elements. Let \(k_0 \) be the algebraic closure of the field obtained by adjoining to the prime field all coefficients of elements in such a basis of \(p \). Then \(k_0 \) has cardinality at most \(a \), and by hypothesis \(k/k_0 \) has transcendence degree of cardinality at least \(a \).

Let \(\mathfrak{p}_0 = k_0[x_a] \cap \mathfrak{p} \). It has the same basis as \(p \). Any algebraic zero of \(\mathfrak{p}_0 \) will therefore be an algebraic zero of \(p \). We shall now find an algebraic zero of \(\mathfrak{p}_0 \). The residue class ring \(k_0[x_a]/\mathfrak{p}_0 \) is isomorphic to a ring extension \(k_0[\xi_a] \) under the natural map, and \((\xi_a) \) is a zero of \(\mathfrak{p}_0 \). It is easy to see that there exists an isomorphism of \(k_0[\xi_a] \) into \(k \) which is the identity on \(k_0 \). If \((\xi'_a) \) is the image of \((\xi_a) \) under this isomorphism, then \((\xi'_a) \) is the desired algebraic zero. (The above-mentioned isomorphism may be constructed as follows: Consider the field \(k_0(\xi_a) \). Select a transcendence base. By our cardinality assumption we may map the rational field generated over \(k_0 \) by this base isomorphically into \(k \). It is now well known that this map may be extended to the algebraic closure, and its restriction to the ring \(k_0[\xi_a] \) is the desired isomorphism.)

In order to complete the proof we need only show that our conditions (i) and (ii) are necessary. In other words, if neither condition is satisfied, then there exists a proper ideal without algebraic zero. We show how to construct such an ideal.

Suppose that \(A \) is an infinite set and that \(b \leq a \). Then the set of elements of \(k \) has cardinality \(c \leq a \). Select an element \(\alpha_0 \) in \(A \). Let \(C = \{ \gamma \} \) be a subset of \(A \setminus \{ \alpha_0 \} \) having cardinality \(c \), and index the elements of \(k \) by \(C \), so \(k = \{ \xi, \ldots \} \). Let \(y \) be transcendental over \(k \). Map \(k[x_a] \) as follows:

\[
\begin{align*}
x_a & \mapsto 0, & \alpha \in C, \alpha \neq \alpha_0, \\
x_{\alpha_0} & \mapsto y, \\
x_{\gamma} & \mapsto \frac{1}{y - \xi_{\gamma}}, & \gamma \in C,
\end{align*}
\]

and let the map be identity on \(k \). Then \(k[x_a] \) is mapped onto \(k[y, 1/(y - \xi_{\gamma}), \ldots] \) which is easily seen to be a field. The kernel
of our map is a maximal ideal and we see that Statements S2 and S3 are violated. This concludes the proof of our theorem.

Reference

ON ORDERED SKEW FIELDS

T. SZELE

In this paper we shall give a necessary and sufficient condition that a skew field can be ordered; moreover, that the ordering of an ordered skew field K can be extended to an ordering of L, L being a given extension of K. The first of these two results generalizes to skew fields a theorem of E. Artin and O. Schreier [1], according to which a commutative field can be ordered if and only if it is formally real. The second result generalizes in the same sense a recent theorem of J. P. Serre [2].

Our considerations are based on the following definition.

Definition. A skew field is said to be ordered if in its multiplicative group a subgroup of index 2 is marked out which is also closed under addition.

Hence a skew field can be ordered if and only if its multiplicative group has a subgroup of index 2 which is also closed under addition.

We shall now prove the following theorem.

Theorem 1. A skew field K can be ordered if and only if -1 cannot be represented as a sum of elements of the form

$$a_1^2 + a_2^2 + \cdots + a_k^2 \quad (a_i \in K, i = 1, 2, \ldots, k).$$

Remark. This property can be considered as a generalization of the notion "formally real" to the case of skew fields.

The necessity of the condition in Theorem 1 is obvious. In order to prove its sufficiency we consider a skew field K in which -1 cannot be represented as a sum of elements (1). We shall show that the

Received by the editors September 20, 1951.

1 Numbers in brackets refer to the bibliography at the end of the paper.