NONCOMMUTING QUASIGROUP CONGRUENCES

H. A. THURSTON

1. The purpose of this paper is to exhibit a quasigroup with two noncommuting congruences on it. The quasigroup is in fact the free equationally-defined commutative quasigroup¹ generated by four elements, and I shall use the construction devised by G. E. Bates and F. Kiokemeister, Bull. Amer. Math. Soc. vol. 54 (1948) p. 1180.

2. DEFINITION. A set S of elements such that to each of certain pairs a, b of elements there corresponds a uniquely-defined product ab in S and such that if ab is defined then so is ba and is equal to it is a *partial commutative groupoid*. The identity xy = yx will be implicitly assumed; e.g. if I define pq, then qp is to be defined as the same element, even if this is not explicitly mentioned.

3. DEFINITION. T is the extension of a partial commutative groupoid S if T consists of the elements of S, together with an element $a \times b$ for each pair a, b for which ab is not defined in S and an element a/b for each ordered pair a, b for which bx = a is not solvable in S, $a \times b$ being equal to $b \times a$, but all other elements being distinct. Multiplication is defined in T as follows: if ab is defined in S, then it is defined in T to be the same element; if ab is not defined in S, then ab is defined in T to be $a \times b$; and for each a/b defined as above (a/b)b=a. All other products in T are undefined.

4. Let J_0 be a commutative partial groupoid in which no products are defined. For each *i*, let J_{i+1} be the extension of J_i , and let *M* be $\bigcup_{i>0} J_i$. Then *M* is a commutative quasigroup (op. cit. Corollary 2).

DEFINITION. The rank, \mathcal{R}_x , of an element x of M is the suffix of the first J_i to which x belongs.

(We could complete the definition of division as an operation on M by putting (xy)/y equal to x. If we do this we see that the algebra we have defined is in fact the free equationally-defined quasigroup generated by the elements of $J_{0.}$)

5. Let q_i be a congruence on J_i ; that is, an equivalence on J_i such that if $a \neq a'$ and $b \neq b'$ and $ab \in J_i$ and $a'b' \in J_i$, then $ab \neq a'b'$. We define q_{i+1} as follows: $x \neq q_{i+1} y$ and $y \neq q_{i+1} x$ if and only if

Received by the editors March 26, 1951 and, in revised form, September 19, 1951.

 $^{^{1}}$ The congruences are quasigroup congruences, not equationally-defined-quasigroup congruences (it is known that any two of the latter commute). (See the last sentence but one of §5.)

H. A. THURSTON

(i) $x q_i y$,

(ii) $x = y (\Re_x = i + 1)$,

(iii) $x = a \times b$ and $y = a' \times b'$, where $a q_i a'$ and $b q_i b'$,

(iv) $x = a \times b$ and $y q_i a'b'$ where $a q_i a'$ and $b q_i b'$,

or

(v) $x q_{i+1} z$ and $y q_{i+1} z'$ via (iv), and $z q_i z'$.

(i) ensures that $q_{i+1} \supseteq q_i$; (ii) ensures that q_{i+1} is on J_{i+1} ; (iv) gives the conditions under which an element of rank i+1 is equivalent to one of lower rank; and (v) says that two elements of rank i+1 which are equivalent to two equivalent elements in J_i are equivalent to one another, and so ensures that q_{i+1} is transitive. In fact, q_{i+1} is an equivalence on J_{i+1} , and if a and b are in J_i , then $a q_{i+1} b$ if and only if $a q_i b$.

 q_{i+1} is a congruence. For suppose that $a q_{i+1} a', b q_{i+1} b', ab \in J_{i+1}$, and $a'b' \in J_{i+1}$. If $a, a', b, b' \in J_i$, then $ab q_{i+1} a'b'$; this follows from the fact that q_i is a congruence if ab and a'b' are in J_i , from (iii) if neither is in J_i , and from (iv) if just one is. Now suppose that a is not in J_i . Since ab is in J_{i+1} , a must be of the form c/b, where $c \in J_i$. c/b is equivalent only to itself, for, of (i) to (v), only (ii) applies to elements of this form. Therefore a' = c/b. But a'b' is in J_{i+1} . Therefore b' = b. Then ab = c = a'b'. Similarly we see that $ab q_{i+1} a'b'$ if any other of the elements a, a', b, b' is not in J_i .

It follows that if q_0 is a congruence on J_0 and q_i is defined for each i > 0 as above and $q = \bigcup_{i>0} q_i$, then q is a congruence on M. It is in fact the least congruence on M for which $a \neq b$ whenever $a \neq 0$ b. (It is a congruence for multiplication only, not for division, unless q_0 is equality.) Clearly $q \cap (J_i \times J_i) = q_i$.

6. An example will illustrate this definition. Let J_0 be $\{\alpha, \beta, \gamma, \delta\}$ and q_0 be $\alpha\beta|\gamma|\delta$. (This notation means that the q_0 -classes are $\{\alpha, \beta\}, \{\gamma\}, \text{ and } \{\delta\}$.) The columns of the table show the q-classes; the rows show the rank of the entry.

0	α, β	γ	δ
1]
2	$(\alpha/\beta)\alpha, (\beta/\alpha)\beta,$ etc.	$(\gamma/lpha)eta, (\gamma/eta)lpha$	$\begin{vmatrix} as \\ \gamma \end{vmatrix}$
3	$(\alpha/\alpha\alpha)(\alpha\beta)$ etc.	$(\gamma/\alpha\alpha)(\alpha\beta)$ etc.]
	•		•

[June

364

1	αα, αβ, ββ	αγ, βγ	•••	α/α			
2						αα∙α, αα∙β, αβ∙α, etc.	•••
3	$\frac{\alpha\alpha}{\beta}\alpha$ etc.	$\frac{\alpha\gamma}{\beta}\alpha$ etc.	•••	$\frac{\alpha/\alpha}{\alpha}\beta$ etc.	•••		
	•	•	•		•		

The process of constructing the table is roughly this: the first row is given. In the second row, no element can go into one of the existing classes, for an element can be equivalent to an element of a previous J_i only via (iv): this requires that the previous element factorizes; but no element of J_0 factorizes in J_0 . The elements $\alpha\alpha$, $\alpha\beta$, and $\beta\beta$ are gathered into one class by (iii), so are $\alpha\gamma$ and $\beta\gamma$, etc. When we come to J_2 , since $\alpha = (\alpha/\alpha)\alpha = (\alpha/\beta)\beta$ we get $(\alpha/\beta)\alpha$ and $(\alpha/\alpha)\beta$ in the q-class of α , and so on.

7. THEOREM. Let q etc. be as above, and let r be defined similarly by putting $r_0 = \alpha |\beta| \gamma \delta$. If a q c r b there is a d of rank less than or equal to max $\{\mathcal{R}_a, \mathcal{R}_b\}$ such that a q d r b.

PROOF. Let \mathcal{P}_n be the statement "If a, b, and c are in J_n and if $a \neq c \neq b$, then $a \neq d \neq b$ where $\mathcal{R}_d \leq \max \{\mathcal{R}_a, \mathcal{R}_b\}$." \mathcal{P}_n may be proved by induction. \mathcal{P}_0 is clearly true, and so is \mathcal{P}_1 . Let n > 1 and suppose \mathcal{P}_m true whenever m < n. Of all the elements x for which $a \neq x \neq b$, let c be one of least rank. If max $\{\mathcal{R}_a, \mathcal{R}_b, \mathcal{R}_c\} < n$, then \mathcal{P}_n is true by the induction hypothesis. If max $\{\mathcal{R}_a, \mathcal{R}_b\} = n$, then \mathcal{P}_n is clearly true. We are left with the case $\mathcal{R}_c = n$, $\mathcal{R}_a < n$, $\mathcal{R}_b < n$.

Then c is equivalent to an element a of lower rank. Therefore, by 5(iii), c=de and a=d'e', where $d \ q_{n-1} \ d'$ and $e \ q_{n-1} \ e'$. Also max $\{\mathcal{R}_d, \mathcal{R}_e\} = n-1$, otherwise we would not have $\mathcal{R}_c = n$. Similarly b=d''e'', where $d \ r_{n-1} \ d''$ and $e \ r_{n-1} \ e''$.

Now we apply \mathcal{P}_{n-1} to d', d, and d''. There exists then a d''' in J_{n-1} such that

(1) $d' \mathfrak{q} d''' \mathfrak{r} d'' \text{ and } \mathcal{R}_{d'''} \leq \max \{\mathcal{R}_{d'}, \mathcal{R}_{d''}\}.$

Similarly,

 $e' \mathfrak{q} e''' \mathfrak{r} e'' \text{ and } \mathcal{R}_{e'''} \leq \max \{\mathcal{R}_{e'}, \mathcal{R}_{e''}\}.$

Now $a \in d''' e''' \mathfrak{r} b$. Since c is an element of least rank for which $a \in \mathfrak{r}$ $\mathfrak{r} b$, we have $\mathcal{R}_{d'''e'''} \geq n$, whence clearly $\mathcal{R}_{d'''e'''} = n$. Then max $\{\mathcal{R}_{a'''}, \mathcal{R}_{e'''}\} = n-1$. Suppose it is d''' which is of rank n-1. Then

$$n-1 = \mathcal{R}_{d''} \leq \max \{\mathcal{R}_{d'}, \mathcal{R}_{d''}\} \qquad (by (1))$$
$$\leq n-1 \qquad (because d' and d'' are in J_{n-1}).$$

Therefore one of d', d'' is of rank n-1; suppose it is d'. We have now that $d'e' \in J_{n-1}$ and d' is of rank n-1. Then we must have d'=f/e'. We saw in §4 that an element of this form of rank n-1 is not equivalent to any other element of J_{n-1} . Therefore d'=d''=d'''=f/e', where $\mathcal{R}_f < n-1$. Now $(f/e')e''=d''e'' \in J_{n-1}$. Therefore e'=e''. Therefore d'e'=d''e''=f. Therefore $a \in f \mathfrak{r} b$ and $\mathcal{R}_f < n-1$. This contradicts the definition of c.

8. In the theorem of §7, put $a = \delta$ and $b = (\gamma/\alpha)\beta$. Then max $\{\mathcal{R}_a, \mathcal{R}_b\} = 2$. Therefore if there is a c such that $a \in c \in b$, there will be one whose rank is at most 2. Clearly there is no such c.

On the other hand, $a = \delta \mathfrak{r} \gamma \mathfrak{q} (\gamma/\alpha)\beta = b$. Therefore \mathfrak{q} and \mathfrak{r} do not commute.

The theorem of \$7 is the application to this problem of a theorem (as yet unpublished) of J. C. Shepherdson.

The reader will notice that q and r have an *infinite* number of *infinite* congruence classes. This is important. I have just received a proof from S. Abhyankar, Harvard University, of the fact that if q and r both fail to have this doubly infinite character, then they commute.

UNIVERSITY OF BRISTOL

366