
THE SECOND HOMOLOGY GROUP OF A GROUP;
RELATIONS AMONG COMMUTATORS

CLAIR MILLER

We are concerned with the problem of assigning a group theoretic

interpretation to the second homology group H2(G, J) of a group G,

with integer coefficients, J[l, p. 486]. We shall define a new group,

H(G), called the associated group of G, which is, roughly speaking,

the group of all relations satisfied by commutators in G, taken

modulo those relations which are trivially, or universally, satisfied.

(The reader is cautioned not to expect that the associated group of

an abelian group necessarily vanishes; we do not regard the state-

ment "x and y commute implies [x, y] = l" as a relation.) We then

show that H(G)^H2(G, J), so that H2(G, J) gives a measure of the

extent to which relations among commutators in G fail to be conse-

quences of universal relations.

For a given group G, let (G, G) be the free group on all pairs (x, y),

with x, y EG. There is a natural homomorphism of {G, G) onto [G, G]

which sends (x, y) into [x, y}. If wE(G, G), we denote its image in

[G, G] by [w], and define Z(G) to be the kernel,

Z(G) = {wE (G,G)\ [w] = l}.

Let B(G) be the normal subgroup of (G, G) generated by the relations

(1) (x, x)~l,

(2) (x, y) ~ (y, x)-\

(3) (xy, z) ~ (y, z)x(x, z),

(4) (y, z)*~ (x, [y, z])(y, z),   .

where x, y, and z range over G and by definition

(5) (y, z)x = (yx, zx) = (xyx~l, xzx^1).

In other words B(G) is the normal subgroup generated by all (x, x),

all (x, y){y, x), etc. The symbol ~ shall mean congruence in (G, G)

mod B(G). Evidently B(G)EZ(G), and we define the associated group

of G to be

H(G) = Z(G)/B(G).

If h'.G—*G' is a homomorphism, we define
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hf.(G,G)^(G',G')

by hf(x, y) = {h(x), h(y)). Then ht carries Z(G) into Z(G') and B(G)

into B(G'), inducing a homomorphism

h*:H(G)^H(G'),

which satisfies

(hg)* = k*g*<       °* = °.       1* ■ li

where 0 is a zero homomorphism, 0(x) = 1, and 1 is an identity homo-

morphism, l(x)=x.

By inverting both sides of (3) and quoting (2) we obtain

(3') (x, yz)~(x, y)(x, z)".

Of the many consequences of the defining relations of B(G) we shall

have need for only the following:

(6) (x, y)(a» ~ (x, y)!".»]

where (x, y)(a-h) is by definition (a, b)(x, y)(a, b)~l,

(7) [(x,y),(a,b)]~([x,y], [a, b]),

(8) (b, b')(ao, bo) ~ ([b, V], ao)(ao, [b, b']b0)(b, V),

(9) (b, b')(b0, a„> ~ ([b, b']b0l a0)(ao, [b, b'])(b, b'),

(10) (b, b')(a, a') ~ ([b, b'], [a, a'])(a, a')(b, V),

(11) (xn,x')~l, n = 0, ±1, • • • ;s = 0, ±1, • • • .

We prove (6) by expanding (ax, by) in two ways, using (3) and (3').

We have

(ax, by) ~ (ax, b)(ax, y)b

~ (x, b)a(a, b)(x, y)h"(a, y)K

Also

(ax, by) ~ (x, by)"(a, by)

~ (x, b)a(x, y)*(a, b)(a, y)K

Comparing, we see that

(a, b)(x, y)b'^(x, yy(a, b),

or

(a, b)(x, y)ia(a, è)"1 ~ (x, y)<*.

Replacing x and y by x^"'-1 and y(bo)_1 gives
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(a, b)(x, y)(a, b)'1 ~ (x, y)^"»-1 = (x, y)'»-"!.

Observe that (7) is a consequence of (6), for

[(x, y), (a, b)] = (x, ?)<••»>{*, y)-1

~ {x, y)[aM(x, y)-1

~ ([a, b], [x, y])(x, y)(x, y)"1 by (4).

Relation (8) is verified by expanding (a0, [b, b']b0) by (3'), giving

<flo, [b, b']bQ) ~ <«„, [4, i']>(a0, ¿o>IM']

~ <a0, [6, 6'])(a0, io)<»-»'> by (6).

Substitution in the right member of (8) gives the desired result.

Relation (9) is proved similarly. Relation (10) is a restatement of

(7). Relation (11) is proved, for non-negative n and s, by an induc-

tion on n+s, using (3) and (3'). When n+s = l, say » = 0 and 5 = 1,

setting x = z and y = l in (3) gives the result. The case of general n

and s follows trivially from the non-negative case by using (3).

Theorem 1. The associated group of a free group is a one-element

group.

The case of a free group with an infinite number of generators fol-

lows from the case of a free group with a finite number of generators;

for if F is free with infinitely many generators and uEH(F), then

uEi*H(F'), where F' is a subgroup of F on finitely many generators,

and i is the inclusion. In case the free group F has but one generator,

then H(F) =1 by virtue of rule (11), (xn, x*)~l. The general case of

a free group with finitely many generators follows at once by induc-

tion from the following

Lemma. If G=A *B is the free product of A and B, then 77(G)
~H(A)XH(B).

Let i:A—*G and j'.B—>G be the natural injections, and let p'.G—^A

and q:G—*B be the natural projections. Inspection of the diagram

H(A)     . .     H(B)

^H(G)

H(Ay ^H(B)

shows that i* and j* are isomorphisms into and that i*H(A) and

J*
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j*H(B) are disjoint. In case H(G) is the group product i*H(A)j*H(B)

the diagram also shows that 77(G) is the direct product i7(G)

= i*H(A) Xj*H(B). The problem, then, is to demonstrate that i7(G)
= i*H(A)j*H(B).

In order to do this we shall be concerned with three subgroups of

(G, G)-j¡A=it(A, A), <B=jf (B, B), and M, the subgroup of (G, G)
generated by all elements of the form (a, b), with a^lEA, and

b^lEB. Let (x, y) be a generator of (G, G), with x = aih ■ • -asbe,

y = äihi ■ ■ ■ âThr, and with a,-, â,EA, £>,-, IjEB. By a repeated applica-

tion of the product rules (3) and (3') we see that (x, y) is congruent

mod B(G) to a product of elements of the form (a, a')z, (b, b')z,

(a, b)z, and (b, a)', with a, a'EA, b, b'EB, and zEG. Each element

of this form can in turn be broken down into a product of terms of

the same type, without the exponent z appearing, by repeated use of

the rules

(5') (a, a')"" = (a"', a"">),

(4') (a, a')** ~ (b0, [a, a'])(a, a'),

(12) (a, b)a°~(aoa, b)(b, o0>,

(13) (a, b)h° ~ (bo, a)(a, bob),

and four more similar rules, obtained from these by interchanging a

with b, aa with bo, and a' with b'. (5') and (4') are restatements of

(5) and (4), and (12) and (13) are restatements of (3) and (3'), using

rule (2), (c, ¿)_1~(d, c). Thus we see that (x, y), and hence any ele-

ment wE(G, G), is congruent to a product iv of terms (a, a'), (b, b'),

(a, b), and (b, a).

Now take each term (b, b') in ir and "commute" it to the right

(beginning with the farthermost right one and proceeding one at a

time) via (8), (9), and (10). Thus we obtain, for the arbitrary element

w of (G, G), w~7r~7r'/3, with ß a product of terms (b, b'), and it' a

product of terms (a, a'), (a, b), and (b, a). Now take each term of the

form (a, a') in it' and commute it to the left via the rules dual to (8)

and (9) (obtained from them by inversion and interchanging a and b) ;

this gives

W <~ ir'ß ~ aw"ß,

with it" involving only terms (a, b) and (b, a), and a a product of

terms (a, a'). By replacing each (b, a) in it" by (c, &)_1 we replace

7r" by /¿Gift and have

w ~ afiß
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with aG<ví, ßE<B, and /¿EVît.
Now let wEZ(G), that is, [w] = l. Then [a] [p][0] = M = 1, and

projecting into A we see that [a] = l; similarly, [/3] = 1, so that [p]

= 1. However [p] = l implies that u = lE'ME(G, G). To see this, let

ß be written as a reduced word in the free group "M; p. = (ai, bi)'1 ■ ■ ■

(av, bj,)'", with e,= ±1, a^lj^bi. Then, by induction on p, we see

that [p.] can be written as a reduced word in the free product G =A * B

in which the last two entries are b~xa~l if ev= — l,or a~xb~x if ep = +l.

In particular [p.] f^ 1 if u is not the empty word.

Thus p = l gives w~apß=aß, with [a] = l and [ß] = l, which

shows that 77(G) =i*H(A)j*H(B) and proves the lemma.

It is possible to use Theorem 1 to show that any "universal rela-

tion" among commutators can be deduced from our defining rela-

tions (1) to (4). Briefly, a "universal relation" is an expression of the

type we have been considering which is valid in any group. We shall

not pursue this.

Digressing for a moment, we remark that in proving that (G, G)

is the group product, mod B(G), of <¡A, "M, and 53 we used only the

fact that G is generated by A and B. Applying this to the direct prod-

uct G =AXB one sees that 77(G) is the group product of i*H(A),

j*H(B), and r(A ®B), where r is a homomorphism from the tensor

product A<8>B into 77(G) defined by requiring that r(a®b) is the

image in 77(G) of (a, b). The fact that r is a well defined homo-

morphism follows from the fact that 77(G) «772(G, /) is abelian, the

congruences

(aid, b) ~ {at, b)ai(ai, b) (by (3))

~ (au l)(a2, b)(au b) (by (4))

~ («2, b)(au b) (by (11)),

and the dual congruence

(a, bib2) ~ (a, h)(a, b2).

If we let a : 77(G) -^A®B be induced by S:(G, G)-^A®B, where
â((aibi, a2b2)) = ai®b2 — a2®bi, an analysis of the diagram

H (A) A® B H(B)
j*

^H(G)'

r* y   I \ Q*w
H(A)^ A®B      ^H(B)
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shows that i*,j*, and r are one-to-one and that

77(G) = hH(A) X j*H(B) X t(A ® B)

« H (A) X H(B) XA® B.

Theorem 2. There is a canonical isomorphism between 77(G) and

H2(G, J) preserving the notion of induced homomorphism; if h:G-^G'

is a homomorphism, we have commutativity in the diagram

H(G)       —U H(G')

» h «
772(G, 7) — U H2(G', J).

Suppose that G is given as a factor group of a group £ by a central

subgroup N of E. The factoring homomorphism n'.E-^G maps E

onto G with kernel N. We define a homomorphism (G, G)—>■£ by

mapping a generator (x, y) of (G, G) into [x, y], where n(x)=x and

i)(y)=y. This is independent of the choices x and y because N is in

the center of E. This homomorphism carries Z(G) onto A^Pi [JS, £] and

carries B(G) onto 1, and hence induces an onto homomorphism

<p:H(G)—>NC\ [E, E]. It is readily verified that the sequence

H(E) — U H(G)-> N H [E, E]

is exact at H(G), that is, kernel <p = image 77*.

If G is an arbitrary group, we can represent G as the factor group

of a free group F by a subgroup R, G = F/R. Letting F° = F/[F, R]

and R* = R/[F, R] we have

X v
F->!F°-> G

W       VJ

i?->J?°   -

U

[F,R]

where X and t) are the factoring homomorphisms. R° is in the center

of F°, so that <f> maps 77(G) onto R°r\[F°, F0]. By exactness in the

sequence 77(F°)-*77(G)^i?°n [F°, F°], 0 will be one-to-one provided

that 77* =0. To see that this is actually the case, let w = (xx, yi) ■ • •

(xp, yp)EZ(F"). Then [w] = [xu yi] • ■ • [xp, yp] = 1EF°, and, choos-

ing Xi, y,:E F such that X(x¿) =x¿ and X(y¿) =y¿, we have w = (xi,yi) • • •

(xv,  yp),  with  \§w = w,  \[w]=[w] = l,   and   hence   [w]G[F,   R].
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Therefore [w]= [fh ri] • • • [fa, rq], for some/,£F and r,-£i?. How-

ever F is free, H(F) = 1, and B(F)=Z(F). Hence w~(/i, ri) • • •

(fs, rq) mod jB(F). Then

rj|W = Vf\tw ~ î?#X/((/i. fl) • ' •  (/«,, »",))

~.(t»X/l, 1) • • •  (r,X/„ 1)~1,

and îj*=0.
Thus 0:77(G)«i?°n[F°, F0]. However 7v°n[F°, F°] = i?

fMF, ^]/[^> ^] 's the Hopf construction for H2(G, J), so that we

have constructed the desired isomorphism.

A formula can be given for our isomorphism. If w = (xi, yi) • • •

(Xp, yv)EZ(G), then the homology class in i72(G, 7) corresponding

to the image of w in i7(G) is the class of the 2-cycle

[xí, yi], [xi+i, yi+i]) - (1, 1)}

where g(x, y) = (x, y) — (y, x) — (yx, (yx)~l) + (xy, (yx)~x). When G is

abelian this simplifies to

(15) p((x, y)) = (x, y) - (y, x).

A proof of the validity of this formula (we omit it) can be obtained

by examining the explicit formulation of the isomorphism H2(G, J)

^R°n[F°, F°] as given by Eilenberg and MacLane [l, p. 485 and

2, p. 75]. (14) shows that the isomorphism is independent of the

choice of the representation of G as F/R and that commutativity

holds in the diagram as asserted in Theorem 2.

As a simple application of our description of H2(A, J) we give a

more detailed analysis of the structure of 77(^4) (and hence of

H2(A, J) also) for an abelian group A. Since Z(A)=(A, A), and

Z(A)/B(A) =H(A)**H2(A, J) is abelian, we see that, for the

abelian case only, we may as well have taken (A, A) to be the free

abelian group on the pairs (x, y). This we now do. Writing both A

and (A, A) additively, the defining relations of B(A), together with

the consequent relation (3'), become

(1A) (x, x}~0,

(2A) (x, y)-(y, x),

p(w) = 22 g(xu yù

(14)

+ 2 {([*i, yi]
i=l

(3A) <x+ y, z)~ <x, z)+ (y, z),
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(3'A) (x, y + z) ~ (x, y) + (x, z),

(4A) (x, 0) ~ 0.

Observe that (4A) is a consequence of (3'A) by setting y = 0 in

(3'A). Also, (x+y, x+y)~0 by (1A), and expanding this by (3A)

and (3'A) shows that (2A) is a consequence of (1A), (3A), and (3'A).

Thus B(A) can be defined by (1A), (3A), and (3'A), which proves:

Theorem 3. For an abelian group A, 11(A)—A ®A/D, where D is

the subgroup of the tensor product A®A generated by the diagonal,

{a®a\ aEA }.

This gives an isomorphism A ®A/D^H2(A, J), which, in view of

(15), is induced by the homomorphism A ®A-^H2(A, J) in which

x®y is mapped into the homology class of (x, y) — (y, x).
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