We shall say that an analytic function \(f(z) \) has property \(J \) at a point \(z_1 \) if the sequence of derivatives \(\{ f^{(n)}(z_1) \} \), \(n = 0, 1, \cdots \), takes on only a finite number of distinct values. An entire function of the form

\[
f(z) = Q(z) + \sum_{j=0}^{m-1} A_j \exp \{ \omega^j z \},
\]

where \(Q(z) \) is a polynomial and \(\omega = \exp \{ 2\pi i/m \} \), has property \(J \) at every point, but a function having property \(J \) at one point is not necessarily a special exponential sum (as we shall term a function of form (1)). We give three theorems whose conditions relate property \(J \) to special exponential sums.

Theorem 1. If \(f(z) \) has property \(J \) at two points, then it is a special exponential sum.

Theorem 2. If \(f(z) \) has property \(J \) at a point \(z_1 \), and if at a second point \(z_2 \neq z_1 \) infinitely many derivatives are equal, then \(f(z) \) is a special exponential sum.

Theorem 3. Let \(r, \sigma, A \) be arbitrary positive numbers, with \(r \) an integer and \(\sigma \leq 1 \). Then there is an integer \(V = V[r, \sigma, A] \) with the following property: Let \(f(z) \) have property \(J \) at \(z_1 \), where the distinct values of \(\{ f^{(n)}(z_1) \} \) are \(a_1, \cdots, a_t \), with \(t \leq r \) and

\[
\min |a_i - a_j| \geq \sigma \max |a_i - a_j| \quad (i \neq j = 1, 2, \cdots, t).
\]

If for a value \(z_2 \) in \(0 < |z_1 - z_2| \leq A \) there are more than \(V \) equal quantities in the sequence \(\{ f^{(n)}(z_2) \} \), then \(f(z) \) is a special exponential sum.

It is clear that Theorem 3 implies 2 and 2 implies 1, so it suffices to establish 3. Since a translation in the independent variable does not alter the essential conditions, we may suppose that \(z_1 = 0 \) and (changing the letter) that \(z_2 = a \). Then

\[
f(z) = \sum_{n=0}^{\infty} c_n \frac{z^n}{n!} = \sum_{n=0}^{\infty} d_n \frac{(z - a)^n}{n!},
\]

where \(c_n = f^{(n)}(0) \) and \(d_n = f^{(n)}(a) \). If we differentiate (3) \(n \) times and set \(z = a \), we obtain the linear relations

Presented to the Society, April 26, 1952; received by the editors November 30, 1951.
Define
\[\delta_k(A) = \sum_{p=1}^{\infty} \frac{A^p}{(k + 1)(k + 2) \cdots (k + p)}. \]
Since \(\delta_k(A) \to 0 \) as \(k \to \infty \), there is a smallest value \(k = K = K[a, A] \)
such that
\[\delta_K(A) < \sigma. \]
We shall show that a possible choice of \(V \) is \(V = r^K \). Set
\[P_{n,s}(a) = c_n + \frac{a}{1!} c_{n+1} + \cdots + \frac{a^s}{s!} c_{n+s}. \]
Then
\[d_n - d_q = \{ P_{n,K-1}(a) - P_{q,K-1}(a) \} \]
\[+ \frac{a^K}{K!} \left((c_{n+K} - c_{q+K}) + \sum_{s=K+1}^{\infty} (c_{n+s} - c_{q+s}) \frac{a^{s-K}}{(K + 1) \cdots s} \right). \]
Since \(|c_{n+s} - c_{q+s}| \leq \max |a_i - a_j| \), and \(|a| \leq A \), the last sum in (8) cannot exceed in magnitude the quantity \(\delta_K(A) \cdot \max |a_i - a_j| \).
Now suppose \(d_{n_1} = d_{n_2} = \cdots = d_{n_v} \), where \(v > r^K \). Since each \(c_j \) has one of the values \(a_1, \cdots, a_t \), therefore for fixed \(s \) there are at most \(r^{s+1} \) different expressions \(P_{n,s}(a) \). Hence of the expressions \(P_{n_j,K-1}(a), \)
\(j=1, \cdots, v \), at least two are equal; say for \(n = n_a, n_b \). Taking \(n = n_a, q = n_b \) in (8), we see that
\[c_{n_a+K} - c_{n_b+K} = \sum_{s=K+1}^{\infty} (c_{n_a+s} - c_{n_b+s}) \frac{a^{s-K}}{(K + 1) \cdots s}; \]
so
\[|c_{n_a+K} - c_{n_b+K}| \leq \delta_K(A) \cdot \max |a_i - a_j| < \sigma \cdot \max |a_i - a_j| \]
This is in contradiction to (2) unless \(c_{n_a+K} = c_{n_b+K} \). We may therefore rewrite (9) as
\[(c_{n_a+K+1} - c_{n_b+K+1}) = -\sum_{s=K+2}^{\infty} (c_{n_a+s} - c_{n_b+s}) \frac{a^{s-K-1}}{(K + 2) \cdots s}, \]
and from this conclude that \(c_{n_a+K+1} = c_{n_b+K+1} \), and so on, with the result that
\[c_{n+a+K+j} = c_{n+b+K+j}, \quad j = 0, 1, 2, \ldots. \]

Thus, beginning at least with the index \(n = n_a + K \), the sequence \(\{c_n\} \) is periodic; and it is an easy consequence that \(f(z) \) is a special exponential sum.

Remarks. (i) A theorem of Szegö states that if the coefficients \(\{c_n\} \) of the series \(F(z) = \sum_0^\infty c_n z^n \) take on only a finite number of distinct values, then either (a) \(F(z) \) has the circle \(|z| = 1 \) as cut, or (b) \(F(z) \) is a rational function of the form \(F(z) = P(z)/(1-z^m) \) where \(m \) is a positive integer and \(P(z) \) is a polynomial. Both cases arise, and this suggests the problem of assigning a further condition to insure (let us say) that case (b) holds. If we introduce the entire function \(f(z) = \sum_0^\infty c_n z^n/n! \) associated with \(F(z) \), then \(f(z) \) has property \(J \) at \(z = 0 \); and case (b) is easily seen to be equivalent to the condition that \(f(z) \) be a special exponential sum. Thus, the conditions of any one of Theorems 1, 2, 3 suffice to guarantee case (b).

(ii) Theorem 1 shows that relative to property \(J \) there are only three possibilities for an analytic function \(f(z) \): either it has property \(J \) at no point whatever, or at just one point, or at all points. Also, as noted by the referee, Theorem 1 can be formulated in this way: If an entire function of exponential type has for its indicator diagram a circle, center at the origin, then it cannot have property \(J \) at two points.

(iii) In the course of the proof of Theorem 3 it was shown that a permissible choice of \(V \) is \(V = V[r, \sigma, A] = r^K \), where \(K = K[\sigma, A] \). It would be of interest to determine, for given \(r, \sigma, A \), the smallest possible \(V \). It is conceivable that this minimum \(V \) is independent of one or more of the quantities \(r, \sigma, A \).

The Pennsylvania State College
