ON A CONJECTURE CONCERNING DOUBLY STOCHASTIC MATRICES

S. SHERMAN

A doubly stochastic (d.s.) matrix is a real \(n \times n \) matrix \(P = (p_{ij}) \) such that

1. \(p_{ij} \geq 0 \), \(1 \leq i \leq n, 1 \leq j \leq n \),
2. \(\sum_i p_{ij} = 1 \), \(1 \leq i \leq n \),

and

3. \(\sum_j p_{ij} = 1 \), \(1 \leq j \leq n \).

We introduce a partial order among d.s. matrices by defining

4. \(P_1 < P_2 \)

to mean there exists a d.s. matrix \(P_2 \) such that

5. \(P_1 = P_2 P_1 \).

We introduce a partial order among real vectors \(a = (a_1, \ldots, a_n) \) of our real \(n \)-dimensional space \(E \) by defining

6. \(a < b \)

to mean for each real convex \(\phi \)

7. \(\sum_i \phi(a_i) \leq \sum_i \phi(b_i) \).

By [HLP, p. 89], \(a < b \) if and only if there exists a d.s. matrix \(P \) such that

\[
a = Pb = \left(\sum_i p_{1i}b_i, \ldots, \sum_i p_{ni}b_i \right).
\]

This implies that for each real \(n \)-vector \(a \),

8. \(P_1 < P_2 \Rightarrow P_1 a < P_2 a \).

Kakutani has raised the following conjecture.

Conjecture. If, for each real \(n \)-vector \(a \), \(P_1 a < P_2 a \), then \(P_1 < P_2 \).

By [HLP, p. 89] if the hypothesis is satisfied there exists a d.s.

Presented to the Society, December 28, 1951; received by the editors November 19, 1951.
matrix P_a^2 such that
\[P^1a = P_a^2P^3a. \]

The issue is to show that if there exists such a P_a^2 for each vector a, there exists a d.s. P^2 independent of a such that $P^1 = P^2P^3$.

Let \mathcal{P} be the collection of vectors with non-negative components. Requirement (1) is equivalent to the requirement
\[PP \subset \mathcal{P}. \]

If e is the vector all of whose components are unity, then requirement (2) is equivalent to requirement
\[Pe = e, \]

i.e., e is a characteristic vector of characteristic value unity. If \hat{e} is the element of E, the conjugate space of E, whose value at $a \in E$ is given by $(\hat{e}, a) = \sum a_i$, then $e^\perp = \{ a \mid (\hat{e}, a) = 0 \}$ is the set of vectors $a \in E$ whose components add up to zero. Requirement (3) is equivalent to
\[P(e^\perp) \subset e^\perp. \]

Proof of conjecture. Suppose now $P^1a < P^3a$ for each $a \in E$. Consider a mapping $\psi: P^3E \rightarrow P^1E$ defined as follows: if $b \in P^3E$, for some $a \in E$ we have $b = P^3a$, then let $\psi(b) = P^1a$. We first prove (i) that we have a valid definition, i.e., $\psi(b)$ is uniquely defined by the above and then we prove (ii) that $\psi: P^3E \rightarrow P^1E$ is a linear transformation.

In order to prove (i) suppose that $P^3a' = P^3a'' = b$. We wish to show that $P^1a' = P^1a''$. If $P^3a' = P^3a''$, then $P^3(a' - a'') = 0$, the zero vector. Since $P^1(a' - a'') = P^3(a' - a'')$, by (9) we deduce that $P^1(a' - a'') = 0$ and so $P^1a' = P^1a''$. Thus we have shown that ψ is uniquely defined. The linearity (ii) of ψ is now trivial. If α is a real scalar and $P^3a = b$, then $P^3\alpha a = \alpha b$ and $\psi(\alpha b) = P^3\alpha a = \alpha P^1a = \alpha \psi(b)$. Also if $P^3a' = b'$ and $P^3a'' = b''$, then $P^3(a' + a'') = b' + b''$ and $\psi(b' + b'') = P^1(a' + a'') = P^1a' + P^1a'' = \psi(b') + \psi(b'')$.

Suppose $P^3a \in \mathcal{P}$. Since $P^1a < P^3a$ by (9) there exists a d.s. P_a such that $P^1a = P_aP^3a \in \mathcal{P}$. Thus $\psi(P_a \cap P^1E) \subset \mathcal{P}$. Since P^1 and P^3 are d.s. matrices, $P^1e = P^3e = e$ and so $\psi(e) = e$. If by (P_a), we denote the ith component of P_a, then by [HLP, p. 89] and the assumption $P^1a < P^3a$ we have
\[\sum_i (P^1a)_i = \sum_i (P^3a)_i. \]
In particular

\[\psi(\bar{e}_1 \cap P^3 E) \subset \bar{e}_1. \]

We can now extend \[\psi \] to a function \[\Psi \] on all of \[E \] by letting \[\Psi(b) = 0 \] for each \[b \in E \cap (P^3 E)' \], the complement of \[P^3 E \], and \[\Psi(b) = \psi(b) \] for each \[b \in P^3 E \]. Now \[\Psi \] is a linear transformation satisfying the requirements

\[\Psi(\mathcal{P}) \subset \mathcal{P}, \quad \Psi(e) = e, \quad \Psi(\bar{e}_1) \subset \bar{e}_1. \]

Therefore we can represent \[\Psi \] by a d.s. matrix \[P^2 \]. We now have \[P^1 a = P^2 P^3 a \] for each \[a \in E \] and therefore \[P^1 = P^2 P^3 \], thus establishing the conjecture.

It can readily be shown that if \[P^1 < P^3 \], then for each \(j = 1, 2, \ldots, n \)

\[
\begin{pmatrix}
\hat{p}_{1j} \\
\hat{p}_{2j} \\
\vdots \\
\hat{p}_{nj}
\end{pmatrix}
<
\begin{pmatrix}
\hat{p}_{1j} \\
\hat{p}_{2j} \\
\vdots \\
\hat{p}_{nj}
\end{pmatrix}.
\]

It would be interesting to establish the converse.

Reference

Navy Research Group, Lockheed Aircraft Corporation