A COMBINATORIAL PROBLEM ON ABELIAN GROUPS

MARSHALL HALL, JR.

1. Introduction. Suppose we are given a finite abelian group A of order n, the group operation being addition. If

$$\left(a_1, a_2, \ldots, a_n \right)$$

$$\left(c_1, c_2, \ldots, c_n \right)$$

is a permutation of the elements of A, then the differences $c_1 - a_1 = b_1, \ldots, c_n - a_n = b_n$ are n elements of A, not in general distinct, such that $\sum_{i=1}^{n} b_i = \sum_{i=1}^{n} c_i - \sum_{i=1}^{n} a_i = 0$, since the sum of the c's and the sum of the a's are each the sum of all the elements of A. The problem is to show that conversely given a function $\phi(i) = b_i$, $i = 1, \ldots, n$, with values b_i in A subject only to the condition that $\sum_{i=1}^{n} b_i = 0$, then there exists a permutation

$$\left(a_1, \ldots, a_n \right)$$

$$\left(c_1, \ldots, c_n \right)$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \ldots, n$, if the b's are appropriately renumbered. This problem\(^1\) is solved in this paper.

2. Solution of the problem.

Theorem. Given a function $\phi(i) = b_i$, $i = 1, \ldots, n$, with b_i in A, an additive abelian group of order n, subject to the condition $\sum_{i=1}^{n} b_i = 0$, there exists a permutation

$$\left(a_1, \ldots, a_n \right)$$

$$\left(c_1, \ldots, c_n \right)$$

of the elements of A such that $c_i - a_i = b_i$, $i = 1, \ldots, n$, the b's being appropriately renumbered.

Proof. If we take a_1, a_2, \ldots, a_n as the elements of A in an arbitrary but fixed order, the problem consists in renumbering the b's so that $a_1 + b_1 = c_1, a_2 + b_2 = c_2, \ldots, a_n + b_n = c_n$ are all distinct.

It is sufficient to prove that given a permutation whose differences are $b_1, b_2, \ldots, b_{n-2}, b'_{n-1}, b'_n$, we can find another whose differences $b_1, b_2, \ldots, b_{n-2}, b'_{n-1}, b_n$ are the same except that two of them, b'_{n-1} and b'_n, have been replaced by two others, b_{n-1} and b_n, with the

Presented to the Society, October 27, 1951; received by the editors July 24, 1951.

\(^1\) For the cyclic group this shows the truth of a conjecture of Dr. George Cramer.
same sum $b_{n-1} + b_n = b'_{n-1} + b'_n$. For the identical permutation has differences $0, 0, \cdots, 0$ and we may replace these differences two at a time to give differences $b_1, w_1, 0, \cdots, 0; b_2, w_2, 0, \cdots, 0; \cdots; b_1, b_2, \cdots, b_{n-1}, w_n$ where $w_1 = -b_1, w_2 = -b_1 - b_2, \cdots, w_n = -b_1 - b_2 - \cdots - b_{n-1} = b_n$.

Thus we suppose given an incomplete permutation

\[
\begin{pmatrix}
(a_1, \cdots, a_{n-2}, \cdots) \\
(c_1, \cdots, c_{n-2}, \cdots)
\end{pmatrix}
\]

with differences $b_1, b_2, \cdots, b_{n-2}$ which we represent by a table:

\[
\begin{array}{cccccccc}
a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} & a_n \\
b_1 & b_2 & \cdots & b_{n-2} & b_{n-1} & b_n \\
c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} & c_n \\
\end{array}
\]

(2.1)

In this table $a_i + b_i = c_i, i = 1, \cdots, n-2$, and we have left over two a's, two b's, and the two elements u_0 and u_{-1} which together with $c_1, c_2, \cdots, c_{n-2}$ make up all the elements of A. Here we have

\[
\sum_{i=1}^{n-2} 2a_i + a_{n-1} + a_n + \sum_{i=1}^{n-2} b_i + b_{n-1} + b_n = \sum_{i=1}^{n-2} c_i + u_{-1} + u_0
\]

(2.2)

since each of $\sum_{i=1}^{n-2} a_i$ and $\sum_{i=1}^{n-2} c_i + u_{-1} + u_0$ is the sum of all the elements of A and by hypothesis $\sum_{i=1}^{n-1} b_i = 0$. But since $a_i + b_i = c_i, i = 1, \cdots, n-2$, we shall have from (2.2)

\[
a_{n-1} + a_n + b_{n-1} + b_n = u_{-1} + u_0.
\]

(2.3)

In (2.3) if one a plus one b is one of the u's, then the other a plus the other b is the remaining u and we can complete (2.1) to a full permutation with differences b_1, \cdots, b_n as was to be done. If not, then the equation $x + b_{n-1} + u_{-1}$ has as its solution $x = a_{r_1}, 1 \leq r_1 \leq n-2$. Now in (2.1) let us replace b_{r_1} and c_{r_1} by b_{n-1} and u_{-1} leading to the following table:

\[
\begin{array}{cccccccc}
a_1 & \cdots & a_{r_1} & \cdots & a_{n-2} & a_{n-1} & a_n \\
b_1 & \cdots & b_{n-1} & \cdots & b_{n-2} & b_{r_1} & b_n \\
c_1 & \cdots & u_{-1} & \cdots & c_{n-2} & u_0 & c_{r_1} \\
\end{array}
\]

(2.4)

and as from (2.1) we have

\[
a_{n-1} + a_n + b_{r_1} + b_n = u_0 + c_{r_1}.
\]

(2.5)

In (2.5) if one a plus one b is u_0 or c_{r_1}, the same holds for the other a, b, and c_{r_1} or u_0 and we have found a solution to the problem. If
not, the equation \(x + b_1 = \gamma_0 \) has a solution \(x = a \) with \(1 \leq r_1 \leq n - 2 \). Let us then replace \(b_1 \) and \(\gamma_1 \) by \(\beta_1 \) and \(\gamma_0 \) in (2.4) leading to another incomplete permutation. If we continue this process for \(i \) steps, we have (if \(a, \ldots , a, a_1 \) are all different)

\[
a_1 \cdots a_1 \quad a_2 a_2 \cdots a_{i-1} a_{i-1} \quad a_{i-2} a_{i-2} \cdots a_n a_n
\]

(2.6)

\[
b_1 \cdots b_{i-1} b_{i-1} \cdots b_{n-2} b_{n-2} \quad b_{i-1} b_{n-1} \\
c_1 \cdots c_{i-1} c_{i-1} \cdots c_{n-2} c_{n-2} \quad c_{i-2} c_{i-2}.
\]

At the \(i \)th stage we solve the equation \(x + b_i = \gamma_{i-1} \). If this \(x \) is \(a_{i-1} \) or \(a_i \), the relation

\[
a_{i-1} + a_i + b_i + n = \gamma_{i-1} + c_i
\]

(2.7)

leads to a solution of the problem. If not, \(x = a_{i+1} \) with \(1 \leq r_{i+1} \leq n - 2 \) and we proceed to the \((i+1)\)th stage by replacing \(b_{i+1} \) and \(\gamma_{i+1} \) by \(b_i \) and \(\gamma_{i-1} \). Hence either (1) we reach a solution of the problem or (2) the process continues indefinitely. We shall show that the second alternative cannot arise. In the second alternative since \(a_{i+1} \), \(a_{i+2} \), \(\ldots \) are drawn from the finite set \(a_1, \ldots , a_{n-2} \), there will be indices \(i \) and \(j \) such that \(a_{i+1} \), \(\ldots , a_{i+j} \), \(a_{i+j} \) are all distinct, but \(a_{i+j} = a_i \). Then at the \(i \)th step we have

\[
a_1 \cdots a_i \quad \cdots a_{i+j} \quad a_{i+j+1} a_{n-1} a_n
\]

(2.8)

\[
b_1 \cdots b_{i-1} \cdots b_{i+j-1} \cdots b_{n-2} b_{n-2} \quad b_{i+j} b_{n} \\
c_1 \cdots c_{i-1} \cdots c_{i+j-1} \cdots c_{n-2} c_{n-2} \quad c_{i+j} c_{i+j}.
\]

and the solution of \(x + b_{i+j} = \gamma_{i+j-1} \) is \(x = a_{i+j} \). At the \((j+1)\)th stage the \(b \)'s and \(c \)'s left over are

\[
b_{i+j} b_n \\
c_{i+j} c_{i+j-1}
\]

whence

\[
a_{n-1} + a_n + b_{i-1} + n = \gamma_{j} + c_{i+j-1}.
\]

(2.9)

But at the \((i-1)\)th stage we had (from (2.7) or (2.3) if \(i = 1 \))

\[
a_{n-1} + a_n + b_{i-1} + n = \gamma_{i-2} + c_{i-1}.
\]

(2.10)

Comparing (2.10) and (2.11) we find that

\[
c_{i+j} = \gamma_{i-1}.
\]

(2.12)

But this is a contradiction since \(j > i - 1 \) and \(c_{i+j} \) and \(\gamma_{i-1} \) are distinct elements in (2.8). Thus the second alternative does not arise and we
find a solution to the problem in not more than \(n - 2 \) steps.

3. **Application to Latin squares.** Consider a Latin square which is the Cayley table for an abelian group of order \(n \)

\[
\begin{array}{cccc}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{array}
\]

(3.1)

Here if \(a_1, a_2, \ldots, a_n \) are the elements of \(A \), then in the table above \(a_{ij} = a_i + a_j \). If

\[
\begin{pmatrix}
 a_1, \ldots, a_n \\
 c_1, \ldots, c_n
\end{pmatrix}
\]

is a permutation of the elements of \(A \), then \(c_r \) is below \(a_r \) in the \(k \)th row if \(c_r - a_r = b_r = a_k \). We say that \(c_1, c_2, \ldots, c_r, \ldots, c_n \) agrees with the \(k \)th row in position \(r \). Thus the theorem asserts that there exists a permutation agreeing with the \(i \)th row \(k_i \) times if and only if

(3.2.1) \[k_1 + k_2 + \cdots + k_n = n, \]

and

(3.2.2) \[k_1 a_1 + k_2 a_2 + \cdots + k_n a_n = 0, \]

where (3.2.1) is a count of the \(k \)'s and (3.2.2) is an equation in \(A \). The sum of all the elements of an abelian group \(A \) is known to be 0 unless \(A \) contains a unique element of order 2, in which case the sum is this unique element. In the special case in which \(k_1 = k_2 = \cdots = k_n = 1 \) we say that \(c_1, \ldots, c_n \) is a transversal of the Latin square. Here (3.2.2) does not hold if \(A \) contains a unique element of order 2 and there is no transversal. But if \(A \) does not contain a unique element of order 2, then (3.2.2) does hold and there is a transversal of the Latin square. This special case of the theorem above was proved by Lowell Paige in his doctoral dissertation at the University of Wisconsin.

Ohio State University