Let X be a semi-compact separable metric space. We shall prove the following theorem using results found in Hurewicz and Wallman's book *Dimension theory* (Princeton University Press, 1948):

Theorem. $\dim X \leq n$ if and only if any closed subset of X containing at least two points can be disconnected by a closed set of dimension $\leq n - 1$.

The necessary and sufficient condition stated in the theorem was found in looking for an n-dimensional analogue of the property of a space being totally disconnected (property α_0 below) and will be denoted by α_n.

Hurewicz and Wallman show (p. 20) that the following three properties of the space X are equivalent:

- α_0. X is totally disconnected.
- β_0. Any two points in X can be separated.
- γ_0. Any point can be separated from a closed set not containing it, that is, $\dim X = 0$.

They also show (p. 36) that the following n-dimensional analogues of β_0 and γ_0 are equivalent:

- β_n. Any two points in X can be separated by a closed set of dimension $\leq n - 1$.

Received by the editors December 5, 1951.
Any point can be separated from a closed set not containing it by a closed set of dimension \(\leq n-1 \), that is, \(\dim X \leq n \).

As we have already noted, the \(n \)-dimensional analogue of \(\alpha_n \) is:
\(\alpha_n \). Any closed subset of \(X \) containing at least two points can be disconnected by a closed set of dimension \(\leq n-1 \).

Obviously \(\gamma_n \) implies \(\beta_n \) and \(\beta_n \) implies \(\alpha_n \). We shall show that \(\alpha_n \) implies \(\gamma_n \). It will then follow, in analogy with the 0-dimensional case, that \(\alpha_n, \beta_n, \) and \(\gamma_n \) are equivalent, thus proving the theorem. The known equivalence of \(\beta_n \) and \(\gamma_n \) is not used in our proof.

We are to show that if the space \(X \) possesses property \(\alpha_n \), then \(\dim X \leq n \). Since \(X \) is the countable union of compact sets we need only to show, by virtue of the sum theorem for dimension \(n \) (p. 30), that this is true of a compact space. Therefore, from this point on, let \(X \) denote a compact separable metric space. The method of the following proof is due essentially to Hurewicz and Wallman. Let \(C \) be a closed subset of \(X \) and \(f \) a mapping of \(C \) in the \(n \)-sphere \(S_n \); it suffices to show (p. 83) that \(f \) can be extended over \(X \). Suppose, to the contrary, that \(f \) cannot be extended over \(X \). There then exists (p. 94) a closed set \(K \) such that:

1. \(f \) cannot be extended over \(C \cup K \), but
2. \(f \) can be extended over \(C \cup K' \) where \(K' \) is any proper closed subset of \(K \).

(This statement is false for spaces which are only locally compact.) If \(K \) contains at most one point, \(f \) clearly can be extended over \(C \cup K \) in contradiction to (1). Therefore \(K \) contains at least two points. It then follows from property \(\alpha_n \) that there exist (p. 47) two proper closed subsets \(K_1 \) and \(K_2 \) of \(K \) such that \(K_1 \cup K_2 = K \) and \(\dim K_1 \cap K_2 \leq n-1 \). By (2), \(f \) can be extended to mappings \(f_1 \) and \(f_2 \) over \(C \cup K_1 \) and \(C \cup K_2 \) respectively. Since \(\dim K_1 \cap K_2 \leq n-1 \), each of the extensions \(f_1 \) and \(f_2 \) can be extended (p. 88) over the union \(C \cup K \) of \(C \cup K_1 \) and \(C \cup K_2 \). Therefore \(f \) can be extended over \(C \cup K \) in contradiction to (1). This contradiction proves that \(f \) can, in fact, be extended over \(X \). Consequently \(\dim X \leq n \), as was to be proved.

Indiana University