A class of multivalent functions with assigned zeros
HTML articles powered by AMS MathViewer
- by Toshio Umezawa
- Proc. Amer. Math. Soc. 3 (1952), 813-820
- DOI: https://doi.org/10.1090/S0002-9939-1952-0050009-5
- PDF | Request permission
References
- A. W. Goodman, On the Schwarz-Christoffel transformation and $p$-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204β223. MR 33886, DOI 10.1090/S0002-9947-1950-0033886-6
- A. W. Goodman, Typically-real functions with assigned zeros, Proc. Amer. Math. Soc. 2 (1951), 349β357. MR 41920, DOI 10.1090/S0002-9939-1951-0041920-9
- A. W. Goodman and M. S. Robertson, A class of multivalent functions, Trans. Amer. Math. Soc. 70 (1951), 127β136. MR 40430, DOI 10.1090/S0002-9947-1951-0040430-7
- N. G. de Bruijn, Ein Satz ΓΌber schlichte Funktionen, Nederl. Akad. Wetensch., Proc. 44 (1941), 47β49 (German). MR 3803
- Shigeo Ozaki, On the theory of multivalent functions. II, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45β87. MR 48577
- M. S. Robertson, Analytic Functions Star-Like in One Direction, Amer. J. Math. 58 (1936), no.Β 3, 465β472. MR 1507169, DOI 10.2307/2370963
- M. S. Robertson, A representation of all analytic functions in terms of functions with positive real part, Ann. of Math. (2) 38 (1937), no.Β 4, 770β783. MR 1503368, DOI 10.2307/1968833
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512β519. MR 51 β, A coefficient problem for functions regular in an annulus, Bull. Amer. Math. Soc. Abstract 57-4-301.
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 3 (1952), 813-820
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9939-1952-0050009-5
- MathSciNet review: 0050009