
1952] LATTICE ORDERING ON BANACH SPACES 833

the American Mathematical Society vol. 3 (1952) pp. 821-828.

2. Nils Sjöberg, Sur les minorantes sousharmoniques d'une fonction donnée, Pro-

ceedings of the Ninth Scandanavian Mathematical Congress, Helsingfors, 1938, pp.

309-319.

3. Marcel Brelot, Minorantes sous-harmoniques, extrémales et capacités, J. Math.

Pures Appl. (9) vol. 24 (1945) pp. 1-32.
4. E. Szpilrajn, Remarques sur les fonctions sousharmoniques, Ann. of Math. vol.

34 (1933) pp. 588-594.

5. T. Rad6, Subharmonic functions, Ergebnisse der Mathematik und ihrer

Grenzgebiete, Berlin, 1937.

University of California, Los Angeles, and

Institute for Advanced Study

LATTICE ORDERING ON BANACH SPACES1

L. J. HEIDER

In all that follows the letter B will denote a given real Banach

space, the letter X a bicompact Hausdorff space, and the symbol

C(X) the space of all real-valued continuous functions c(x) on the

space X. The space C(X) may be considered, among other ways, as

a real Banach space under the norm ||c(x)|| =l.u.b. | c(x) |, xEX, and

as a linear lattice under the partial ordering Ci(x)^c2(x) for Ci(x)

— c2(x) non-negative on X.

A space B equivalent to a C(X) under a linear norm-preserving

isomorphism is, by transfer of the natural order on C(X), susceptive

of a partial ordering under which B becomes both equivalent and lat-

tice-isomorphic to C(X). Thus the question of the purely Banach -

space characterization of C(X) is identical with the question of the

linear normed lattice characterization of C(X) provided the neces-

sary and sufficient conditions under which a given Banach space is

susceptible to a linear lattice ordering together with the additional

conditions of the linear lattice characterizations are expressible in

terms meaningful in all Banach spaces. This principle, applied in

reference to the Kakutani [3]2 linear normed lattice characteriza-

tion of C(X), is implicit in the Clarkson [2] Banach space character-

ization of C(X). The purpose of this note is to present the methods
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of Clarkson in their full generality, to express the simplicity of these

results when reference is made to the Krein [S] rather than to the

Kakutani characterization, and, lastly, to apply these principles to

a characterization of those Banach spaces which are susceptive of a

partial ordering under which they become the abstract (£) spaces of

Kakutani.

1. A relation ^ will be said to provide a linear partial ordering of

space B ii it satisfies the conditions:

(a) bEB implies ¿> = ¿».

(ß)  bs^c and c = ö imply b = c.

(y) bèzc and c ̂  d imply b ̂  d.

(5) b^c implies b+d^c+d and mb^mc for all dEB and all

scalars m^O.

It is known [l, p. 214] that space B or any linear space is susceptive

of such a linear partial ordering if and only if B contains a subset B+

with properties:

(X) 0G£+.
(p) b, cEB+ imply b+cEB+ and if b+c=0, then b = 0 = c.
(v) bEB+ implies mbEB+ for all scalars m^O.

Assume that £ contains a subset B+ with these properties and

consider B under the corresponding linear partial ordering. It is

known [l, p. 215] that £ will be a linear lattice if and only if the

element b+ = b\/0 exists in the usual sense for every bEB. This fact

simplifies the proof of the following:

Lemma 1.1. Space B (or any linear space) with subset B+ is a linear

lattice if and only if bEB implies there exists b+EB such that (B++b)

r\B+=(B++b+).

Proof. Assume that b\/0 = b+ exists in the lattice sense for a par-

ticular bEB. Then (B++b+) Q[(B++b)C\B+] since for arbitrary

bo+ in£+ also b0++b+ is in B+ while bo++b+ = (bo++b+-b)+b=bt+b

with &i+ in £+ (since b+^b implies b+ — b is in B+, so that b0++(b+ — b)

=bt is in £+). Likewise [(B++b)nB+]Q(B++b+), for if bf+b = b2+,
then bt-b=bf- implies bf^b and ¿>2+è0 so that è2+ = è+ or ¿>2+-Z>+

= bf. Thus bf+b = b2+ = b*+b+ with Z>3+ in £+. Hence the existence

of 6V0 implies (B++b)i\B+ = (B++ [b\/0]). Conversely, assume

that for a particular bEB there exists b+EB such that (B++b)C\B+

= (B++b+). Then 0G£+ implies b+EB+ so that 5+^0. Also there

exists b+EB+ such that bf+b = b+=0 + b+. Hence b+-b=bf or
£>+ = £>. Finally assume there exists ba+ with bo+^0 and bo+^b. Then

bo+—b=bt or bt+b = b0+ implies there exists b£ such that bt+b
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= bo+ = bf+b+ so that bo+-b+ = b2+ or bo+^b+. Hence b+ = b\J0 in the

usual sense that the equivalence is established.

Henceforth denote by £+v any subset of space B founding a linear

partial order under which £ is a linear lattice. Now in the linear

normed lattice C(X) the ordering introduced by the set C(X)+W of

non-negative functions is related to the norm on C(X) through the

element e(x) = 1, ||e|| =1, in the following manner: for c(x)EC(X) one

has ||c(x)|| = 1 if and only if — e(x) ^c(x) ^c(x), or, equivalently, both

e(x)+c(x) and e(x)—c(x) are in C(X)+V. Henceforth any subset

£+v of space B containing in addition an element e, ||e|| = l, such

that for bEB one has ||è|| = 1 if and only if —e = Z> = e, or, equivalently,

both e+b and e — b are in B+y will be denoted by the symbol B+A:

We note that the set £+v« is defined in terms meaningful in all

Banach spaces.

Thus Banach space B with subset £+Ve is susceptive of a partial

ordering ^ such that:

(Ki) i = Z>; b^c and c = ô imply b = c; b^c and c = d imply b^d;

b^c implies b+d^c+d for all dEB and mb^mc for all real scalars

w^O.

(K2) bEB implies there exists b+EB such that b+ = b\/0, i.e.,

b+ ̂  0 and &+ = Z> while c ̂  0 and c ̂  b imply c ̂  b+.

(K3) There exists element eEB, \\e\\ =1, e>0, such that for bEB,

\\b\\^l if and only if -e^b^e.
It is seen, conversely, that any space B with element e and partial

ordering ^ satisfying these conditions contains a set B+v". However,

the conditions K,-, i=l, 2, 3, express, equivalently, the Krein linear

normed lattice characterization of C(X). Thus since space B is

equivalent to a C(X) if and only if it is susceptive of a linear partial

ordering under which it is both equivalent and lattice isomorphic to

C(X) and thus satisfies the Krein characterization, we have the fol-

lowing result:

Theorem 1.2. Banach space B is equivalent to a C(X) if and only if B

contains a B+v" subset.

2. The preceding number reduced the Banach space characteriza-

tion to the Krein linear normed lattice characterization. Since the de-

tails of the latter are less available than those of Kakutani's char-

acterization, we give a direct proof of their equivalence and show in

the process that one postulate in Kakutani's definition of an ab-

stract (M) space with strong unit is redundant.

Lemma 2.1. Space B with relation ^ satisfying conditions Kx and K2

also satisfies K3 if and only if:
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(K3')  (p) There exists element eEB, \\e\\ =1, e>0, such that \\b\\ gl

implies —e^b^e.

(a) b^O, c^O imply \\bVc\\ =max (||ô||, ||c||).

(t) bAc = 0 implies \\b+c\\ = ||&||l-e||.

Proof. Assume that space B satisfies conditions Ki, K2, K3, and

let 6^0, c^O be elements of B with ||è|| ^||c|| =0. Since 0^b^b\/c

g 6Vc||c, we have 0g||c|| ^\\b\\ ^||¿Vc||. But 0^&g||&||e andO^c

g c||egyi« imply 0£ôVc^||ô||e so that ||ftVe|| ^||&|| and hence

||ôVc|| =\\b\\ =max (\\b\\, \\c\\) and condition K3' : (a) is satisfied.

Next let bAc = 0 so that b^O and c^O and assume ||è|| ^||c|| ^0.

As in all linear lattices b+c = b\/c+b/\c so that, in the present case,

b + c=bVc. Thus \\b\\ =||&Vc|| =
2l|ô||a||ô-c||+||&+c||   so  that

b+c\\. Also 2b = (b-c) + (b+c) and

|&||g||&-c||.   However  ||&||e = 6 = &

-c^-c^-\\c\\e^-\\b\\e. Thus ||6-c|| g\\b\\ so that ||&-e|| = |NI
= ||i+c|| and condition K3': (t) follows.

Conversely, assume that space B satisfies conditions Ki, K2, K».

As in all linear lattices b=b\Z0-(-b\/0)=b+-b- with b+ Ab~ = 0 so

that ||6||=||è+-HI=ll&++H!=ll&+VHI=max (||ô||+, ||&-||)- But
if    -e^b^e,    then    0^b\/0=b+^e   and    0^-b\/0=b-^e   so

that l=||e||=|eV6+|l=max (ML IMI) and í =\\4 =II«VHI
= max (||e||, ||&-|). Thus ||i|| =max (||¿+||, ||HI) = f and condition K3

is satisfied, and the lemma is proved.

Assume now that space B satisfies conditions Ki, K2 and K3 or K3'.

This space will then also satisfy condition:

(K4) bn^O with limB ||i„-&|| =0 implies b^O.

Thus, since lim„ \\bn — b\\ =0, there exists £ = l.u.b.  (||ô„||). Hence

0^bnu\\bn\\e^Ke for all « or O^bJK^e and -e^bJK-e^O so

that ||ô„/£-e||gl for all n. But lim„ \\l/K-(bn-b)\\=0 so that

||&/2t"-«||^l and 6^0.
To summarize, it was shown that for space £ with relation ~— con-

ditions Ki, K2, K3 are equivalent to conditions Ki, K2, K3 and that in

either case condition K4 is satisfied. Moreover the set B+Ve is seen to

be closed. However space B with relation ^ satisfying conditions

Ki, K2, K3 , K4 is by definition the abstract (M) space with strong

unit in terms of which the Kakutani linear normed lattice character-

ization of C(X) is given. The following result is now evident:

Theorem 2.2. A necessary and sufficient condition that space B be

susceptive of a relation "— under which it becomes an abstract (M) space

with strong unit is that it contain a B+Ve subset.

3. Associated with abstract (M) spaces are what Kakutani calls

abstract (£) spaces [3; 4]:



1952] LATTICE ORDERING ON BANACH SPACES 837

Definition. An abstract (£) space is a space B with a linear partial

ordering 2: such that under this ordering:

(Li) £ is a linear lattice.

(L2) bn^O with lim„

(L3) &Ac = 0 implies

bn-b\\=0 implies b~=0.
& + c||=||&-c||.

(L4) b^O, c^O imply ||Z>+c|| = |NI+II4
A purely Banach space characterization of those spaces £ which are

susceptive of a linear partial ordering under which they become

abstract (£) spaces is now possible. Thus assume that B is susceptive

of such an ordering. In view of L! and L2, £ must contain a closed

£+v subset. Now recall the Myers' [ó] definition of a £-set, T, as a

subsetof£ maximal with respect to the property :biET,i = 1, • • • ,n,

implies || 2Z?_i ¿>»|| = XX i ||i,-||. In view of condition L4 and since the

sum of any finite number of non-negative elements is again such an

element, it follows that £+v is contained in some £-set, T, of B.

Now assume bE(T—£+v). Since £ is a linear lattice, b = (b\J0)

-(-b\J0)=b+-b- with b+Ab~ = 0 and b+, b~ in £+v. However

b+9^0,b-^0 is exc

= b+-b~+b-\\ =

+ Hl-lWl+r
G£+Vç£, \\b+b-

uded, since otherwise, with b±EB+vÇ:T, \\b+b~

b+\\<\M\+2\\b-\\=\\b+ + b-\\+\\b:\\=\\b+-b-
Also b+ = 0, b~5¿0 is excluded since, with b

= ||-6-+&-||=0<||è||+||ô-|l- The only remain-
ing possibilities are that b = b+ or b = 0 so that b is in £+v and £ = £+v.

Thus any abstract (£) space contains a closed £-set, £, with the

properties corresponding to Li and L3, that (T+b)C\T=(T+b+) for

some b+, while (T—b)r\(T—c)=T implies ||ô —c|| =||ô+c||. Denote

such a £-set by the symbol £VA.

Conversely, assume that space B contains a £-set, £VA, which is

closed. Since every £-set, T, has the properties:

(X) 0G£;
(p) h, h in £ imply (h+t2) in T, while h+t2 = 0 implies ti = 0=t2

since ||ii+/2||=||/i|| + ||/,|| ;

(v) tET implies mtET for all scalars ra^O;

it follows that space B is susceptive of a linear partial ordering under

the relation: b^c ii and only if (b — c)ETVA, and that under this

ordering B becomes an abstract (£) space. Thus:

Theorem 3.1. ¿4 necessary and sufficient condition that space B be

susceptive of a linear partial ordering under which it becomes an ab-

stract (L) space is that it contain a closed T-set, £VA.

It is now possible to give purely Banach space interpretations to

the work of Kakutani on abstract (£) spaces. In particular:

Theorem 3.2. // space B contains a close T-set, TVA, then the odd-
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numbered adjoint spaces of B each contain a (closed) set B+v". If space

B contains a set B+v", then the odd-numbered adjoint spaces each con-

tain a set £VA.

This proposition restates the Theorem 15 [3, p. 1021] and the

Remark 3 [3, p. 1023] of Kakutani.
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