Operator commutativity in Jordan algebras
HTML articles powered by AMS MathViewer
- by N. Jacobson
- Proc. Amer. Math. Soc. 3 (1952), 973-976
- DOI: https://doi.org/10.1090/S0002-9939-1952-0051828-1
- PDF | Request permission
References
- Nathan Jacobson, Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105–113. MR 49882, DOI 10.1090/S0002-9939-1951-0049882-5
- N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509–530. MR 41118, DOI 10.1090/S0002-9947-1951-0041118-9
- F. D. Jacobson and N. Jacobson, Classification and representation of semi-simple Jordan algebras, Trans. Amer. Math. Soc. 65 (1949), 141–169. MR 29367, DOI 10.1090/S0002-9947-1949-0029367-8
- P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 35 (1934), no. 1, 29–64. MR 1503141, DOI 10.2307/1968117
- W. H. Mills, A theorem on the representation theory of Jordan algebras, Pacific J. Math. 1 (1951), 255–264. MR 43771
- Neal H. McCoy, On quasi-commutative matrices, Trans. Amer. Math. Soc. 36 (1934), no. 2, 327–340. MR 1501746, DOI 10.1090/S0002-9947-1934-1501746-8 J. v. Neumann, On an algebraic generalization of the quantum mechanical formalism, Mat. Sbornik vol. 1 (1936) pp. 415-482.
Bibliographic Information
- © Copyright 1952 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 3 (1952), 973-976
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9939-1952-0051828-1
- MathSciNet review: 0051828