MULTIPLICATIVE HOMOMORPHISMS OF MATRICES
ELIOT CHAMBERLIN AND JAMES WOLFE

G will denote a system closed under a multiplication. An element
e¢EG is called an identity if ae=ea=a for every a €EG. An element
0&G is called a null element if 0a=a0=0 for every a EG. Clearly e
and 0 are unique if they exist; e=0 if and only if G has just one
element. A square root of the identity is an element ¢EG such that
g*=e. Let HCG be the set consisting of the square roots of the
identity in G and the null element if it exists. We assume throughout
that the elements of H commute with each other. If G is a ring with
identity and without divisors of zero and with ring multiplication as
multiplication in G, then H consists of 0, ¢, —e and these commute
with every element of G, for if g*=e, (¢—e)(¢+€)=0 and ¢g= te.

R will always denote a ring with identity, and I, will denote the
set of #X#»n matrices with elements in R. Let M;(c), Eij;, A:i(c) (457)
be the matrices resulting respectively from the identity matrix I by
multiplying row ¢ by ¢, interchanging rows ¢ and 7, and adding row 1
multiplied by ¢ to row j; these will be called elementary matrices.
Let IMM* denote the set of matrices in M, which are products of
elementary matrices.

For some rings R, M*=M,; if R is such a ring and 6 is a homo-
morphism of R onto a ring R’, then I, =I,] where the prime refers
to matrices with elements in R’. For @ induces in a natural way a
homomorphism 0 of M, onto M,] (merely let 6 act on each element of
the matrix) in which the image of an elementary matrix is elemen-
tary. Suppose that a nonnegative integral absolute value Ia[ is de-
fined in R subject only to the conditions that for every 650 and a
in R, a=bg+r and a=g¢'b+r' where |r|, |7’| <|b]. Then the usual
procedure can be used to reduce a matrix in IR, to diagonal form by
left and right multiplications by elementary matrices with inverses;
see [1, vol. 2, p. 120 ff.]. A diagonal matrix is a product of elementary
matrices M;(c) and the inverse of an elementary matrix is elementary
if it exists, hence if R has an absolute value as above, M*=M,. A
skew field or field or any euclidean ring admits such an absolute
value. If aring R has such an absolute value and 8 is a homomorphism
of R onto a ring S, then for s&S define |sl =min |r| for B(r) =s;
this gives S an absolute value with the above properties.

A mapping ® of MM, or M¥ into G such that $(BC)=®(B)P(C)
for every B, CEM, or M* respectively, will be called a multiplica-
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tive matrix homomorphism. A mapping ¢ of R into G such that
& (uv) =p(u)p(v) for every u, v&ER will be called a multiplicative
homomorphism. The following simple facts will be used ordinarily
without explicit reference.

LemMA 1. (2) If ® is a multiplicative matrix homomorphism of
M, into G, then ® confined to IMF is a multiplicative matrix homo-
morphism of M onto a multiplicatively closed subset of G.

If ® is a multiplicative matrix homomorphism of M, or M onto
G, then: (b) Multiplication in G is associative. (c) G has a null element.
(d) G has an identity.

The proof is obvious; for example the existence of the null and
identity elements in G follows from the existence in M,* of the zero
and identity matrices O and I.

LEMMA 2. Suppose ® is a multiplicative matrix homomorphism of
M.* onto G, then:(1)[B(E:y) ]2 =e. (2) ®(Ei;) =P(En). (3) [R(M(—1))]?
=e. (4) [B(4:c))]P=e. (5) B(4:ii(c)) =B(4if(—0)). (6) B(4:ii(c))
=®(A4.(c)). (7) B(E:;)) =(Mi(—1))2(4:5(1)). (8) If n>2, B(4:4(c))
=e. (9) If n£2 or if the elements of H commute with every element of G,
then ®(M;(c)) =B(Mj(c)). (10). If n>2 or if n=2 and the elements of H
commute with every element of G, then G is commutative.

The following identities gives these results: (1) E;;E;;=1I, hence
Q(E;;)‘I’(E;;) =q>(I) =e. (2) E.',‘=E"~E,,'E,.‘ and E;j=Ej.' and (1)
(3) M,("' I)M«.(— 1) =1I. (4) M.(— I)A.,'(C)M.(— I)A,,(C) =I, hence
®(M(—1))P(4.i(c)) is a square root of e and (4) follows from (3).
(5) Ai(—c)=Mi(—1)4:i(c)Mi(—1) and (3) and (4). (6) A:ii(c)
=Exda(c)Es and A;j(c)=EiAdj(c)Eij. (7) Eij=Mi(—1)4:(1)
Au(—1)4:(1). (8) Asj(e) =Ari(—1)Aa(—0)Ar(1)Aa(c) if 4, j, k are
distinct; then use (4) and (5). (9) M(c) = E:;M j(c)E;j; if elements of H
commute with every element of G then (1) gives the result. If =1, the
result is obvious. If > 2, using (2), ®(M1(c)) = P(E1s)P(Ms(c))P(Ews)
=®(My(c)). Also B(Ma(c)) =P(E:;)P(Mi(c))®(E;;); hence B(Mi(c))
=®(E;))®(My(c))P(E;;) and B(M(c)) =P(M;(c)). (10) If n=2, (9)
and the hypotheses of (10) give ®(M.(c)) =P(M;(c)). But Mi(a) Ms(d)
= M,(b) M1(a), hence all elements of G of the form (M) commute
with each other. Every element of G is a product of elements of the
form ®(M) and elements of H, hence G is commutative if the ele-
ments of H commute with every element of G. If »>2, the last part
of the proof of (9) shows that ®(E) commutes with every ®(M), also
&(A4) =e by (8). Then every element of G is a product of elements of
the forms ®(E) and (M) and these all commute with each other.
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If ® is a multiplicative matrix homomorphism of MM,* onto G and
n#2 or the elements of H commute with every element of G, then
D(M(c)) =P(Mj(c)). Define ¢(c) =P(M;(c)); ¢ is clearly a multiplica-
tive homomorphism of R into G. ¢ will be said to be associated with
®. For BEM, the determinant det B is defined and if R is commuta-
tive, det BC=det B det C for every B and C; if n>1, this identity
implies R is commutative.

THEOREM 1. If R is commutative and n2, every multiplicative
matrix homomorphism ® of M.* onto G is of the form ®(B) =¢ (det B)
where ¢ is a multiplicative homomorphism of R into G uniquely de-
termined by ®.

Take ¢ to be the multiplicative homomorphism associated with
®. The result is clear if n=1; assume n>2. ®(M;(c))=¢(c)
=¢(det Mic)). By Lemma 2 part 8, P(d4;ic))=e=¢(1)
=¢(det A;i(c)) and by Lemma 2 part 7, P(E;;)=%(M.—-1))
=¢(—1) =¢(det E,;). Hence ®(B) =¢(det B) for any elementary
matrix, consequently for any matrix in I.*. If ®(B)=y(det B) for
every BEM.*, Y =¢ since Y(c) =¢(det M;(c)) =B(M:(c)) =¢(c).

CoROLLARY. If F is a commutative multiplicative system or a ring
without divisors of zero, and if R is a field and ® 1is a multiplicative
matrix homomorphism of M, (n#2) into F, then ®=¢(det) where ¢
15 @ multiplicative homomorphism of R into F; ®(B) =P(0) 1f det B=0.
If F=Rand ®(M,(c))=c, P=det.

For if Fis commutative or a ring without divisors of zero, every
multiplicatively closed subsystem of F is a system of type G. Then
Lemma 1 and Theorem 1 give the result.

We shall use G* to denote a system G with the properties: (i) The
elements of H commute with every element of G. (ii) If ab=0, a=0
or b=0. (iii) If g€ H and ga =a for some a0, then g=e. A ring with-
out divisors of zero, under multiplication, and a group with a null
element adjoined are examples of systems G*. In a system G¥,
p=qif p, g€EH and pa=gqa for some a 0.

A multiplicative matrix homomorphism @ of Ms* into G* will be
called simple if Q@ maps MM into H, and the associated multiplicative
homomorphism w maps R into the set {0, e} CG*.

THEOREM 2. If R is commutative and ® is a multiplicative malrix
homomorphism of M onto G*, then ®(B)=Q(B)p(det B) where ¢
is a multiplicative homomorphism of R into G* and Q is simple and
vanishes simultaneously with ¢(det). Such Q and ¢ are umiquely
determined by ®.
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Let ¢ be the multiplicative homomorphism associated with &.
By Lemma 2 parts (1) and (4), $(E) and $(4) are in H and are zero
only if =0, similarly for ¢(—1) and ¢(1). Also P(M) =¢(det M),
hence for any BEMF, ®(B) =bp(det B) where bEH and b can be
taken to be zero if and only if ¢(det B) =0. Then such b is uniquely
determined according to condition (iii) on G*; let @(B)=>5. Then
QB)QC)p(det B)p(det C)=P(B)P(C)=P(BC)=Q(BC)p(det B)
o(det C). If ¢(detB) or ¢(det C) is zero, Q(B)Q(C) =0 and ¢(det BC)
=0 hence Q(BC)=0. If neither ¢(det B) nor ¢(det C) is zero, the
product is not zero and Q(B)Q(C) = Q(BC), hence Q is multiplicative.
QM)E |0, e}, hence @ is simple. If ®(B)='(B)¢’'(det B) where
Q' and ¢’'(det) vanish simultaneously, replacing B by M;(c) shows
¢’ =¢; clearly then Q'=Q.

If ® in Theorem 2 is simple, 2=®. Every multiplicatively closed
subset of a ring without divisors of zero is a system of type G*, hence
Theorem 2 holds for multiplicative matrix homomorphisms & into a
ring without divisors of zero. If Q is simple and ¢ is an arbitrary
multiplicative homomorphism of R into G¥*, then ¥(B) = Q(B)y(detB)
is a multiplicative matrix homomorphism.

Let © be a simple multiplicative matrix homomorphism, let w be
the multiplicative homomorphism associated with @, and let o(c)
=Q(A12(c)) =2(A4ulc)). Clearly @ is determined by w and ¢; for
Q(E), see the proof of Lemma 2 part 7.

LEMMA 3. Suppose Q is simple and w and o are as above, then:
(1) w(ad) =w(a@)w(d). (2) o(a+b)=0d(a)s(d). (3) w(a)=0 or e. (4) If
Q#£0 and ab=1ER, then w(a)=w(d)=e. (5) [o(a)]*=e if Q0.
(6) If w(a) %0, a(ar) =a(r). (7) If a(r) =¢, Q=w(det). (8) w(14+1)=0
or Q=w(det).

These facts are derived from the following identities. (1)
Ml(a)Ml(b)=M1(ab). (2) Au(d‘l‘b) =A12(0)A12(b). (3) Q is simple.
4) If ab=1, My(a) M1(b) =I and Q(I) =e#=0 since 25#0. (5) Follows
from Lemma 2 part 4. (6) Mi(a)A(ar) =A1(r) Mi(a), then use (5)
and the properties of G*. (7) By Lemma 2 part 7 and by Lemma 3
part 4, w(—1) =e and Q(E;;) = QM(—1))Q(4:;(1)) =e=w(det E;;).
Also Q(4:i(r)) =e=w(det A:;(r)) and Q(M;(c)) =w(c) =w(det M;(c)).
Hence Q(B)=w(det B) for every BEMF. (8) If w(141)#0, e
=g(r)o(r) =c((141)r) =a(r) by (6). Then use (7).

TaEOREM 3. If R is commautative and 1/2ER, then all multiplica-
tive matrix homomorphisms ® of I onto G* are of the form Y(det)
where Y is a multiplicative homomorphism of R into G*.
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For by Theorem 2, ®(B)=Q(B)¢(det B) where @ is simple.
Then by Lemma 3 part 4, 2=0 or w(2) =e, and by part 8, 2=0 or
Q=w(det). In either case ¥ is of the form Y (det).

Theorem 3 holds for multiplicative matrix homomorphisms ® into
a ring without divisors of zero; this is easily seen from a remark fol-
lowing the proof of theorem 2.

Let
pe (@) ne() o)
' \or)’ *~\1)’ = \10/)’
01 10 11
S S
10 11 01

be matrices with elements in R = 3, the field of integers modulo two.
Define Qo(P;) =e€G*, Q(N,;)=¢gSHCG* (¢=0, 1=1, 2, 3) and
Qo(B) =0 for other 2X2 matrices with elements in §,. Computation
of the multiplication table for the group of matrices P; and N; shows
2y to be a multiplicative matrix homomorphism.

TrEOREM 4. If M, s the set of 2X2 matrices over a field R, all
maultiplicative matrix homomorphisms ® of M onto G*, except the
homomorphism Qo above, are of the form Y(det) where ¥ is a multi-
plicative homomorphism of R into G*. In particular, if R has more than
two elements, ® is of the form Y(det).

By Theorem 2, ®=Q¢(det) where @ is simple. If either Q or ®
is identically 0 or identically e, the result is obvious. Suppose R is a
field and neither ® nor € is identically 0 or identically e. If a0,
g(a)=0(1) by Lemma 3 parts 4 and 6; hence if there is an rER
distinct from 0 and —1, ¢(1) =g(r4+1) =a(r)a(1). But ¢(1)>0 by
Lemma 3 part 5, hence o(r) =e by condition (iii) on G*, and ¢(a)
=¢(1)=0(r)=e. By Lemma 3 part 7, Q=w(det), and &
=w(det) ¢(det). If Y(a) =w(a)p(a), P=y(det); clearly ¢ is a multi-
plicative homomorphism since w(a) EH and elements of H com-
mute with every element of G*.

If R has no element distinct from 0 and —1, R=3,. Then Lemma 2
shows that ®(N.) =®(Ns) is in H and is not zero since Ny=A4;,(1)
and N3=A4x(1). Also, since —1=+41 and N,=E,;;, ®(N,)=(Ny)
=®(N;) using Lemma 2 part 7. It is also easy to see that ®(P;) =e.
By Theorem 2, ®(B) =0 if det B=0; hence ®(P;) =e, ®(N;)=¢EH
(g#0,1=1, 2, 3) and ®(B) =0 for other B& M,. Thus ® is of the type
Q. If g7#e, ® is not of the form y(det) since det P;=det N;=1.

Let & be the ring of integers and 6:3—$; be reduction modulo two
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and let ® be the induced homomorphism of integral 2 X2 matrices
onto 2 X2 matrices with elements in .

THEOREM 5. All multiplicative matrix homomorphisms ® of the set
of 2X2 maltrices with integral elements onto a system G* are of the form
®(B)=y(det B) or ®(B)=Qy(0(B))¥(det B) where Ry is given .in
Theorem 4 and ¢ is a multiplicative homomorphism of & into G*.

Suppose @ is a simple homomorphism of integral 2 X2 matrices
and is not of the form ¢(det). Then ¢(2n) =o(n)s(n) = and 0(2n41)
=0¢(1)=¢E€H, ¢70. Using this ¢, define @y as in Theorem 4, then
Q(A .-,'(m)) = Qo(A .;(0m)) = Qo(@A ,-;(m)). Also w(2n) =w(2)w(n) =0 by
Lemma 3 part 8, and Q(M;(c)) = Qo(OM;(c))w(c) since Lo(OM;(c))
vanishes only if @(M;(c)) vanishes and otherwise is e. Thus for
matrices of type M and A (hence for arbitrary matrices), Q(B)
= Qy(0B)w(det B). Then using Theorem 2, ®=y(det) or ® is of the
form Q,(©)y¥(det) for some multiplicative homomorphism ¢ of & into
G* and Q, of the type mentioned in Theorem 4.

If G* is the set of integers under multiplication, H= {0, 1, —1 }
The only homomorphisms of type @, are (taking ¢g=1) Q(P;)
=Q4 (N;)=1, QJ (B) =0 if B#N;, P;,and Q' (P;)=1, Q' (Ny)=—1,
Q4' (B) =0 if B~ N;, P;. Qf is of the form y(det).

CoOROLLARY. Every multiplicative matrix homomorphism of integral
2X 2 matrices into S is of the form Y(det) or Q' (O)(det) for some
maultiplicative homomorphism ¥ of & into 3.
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