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G will denote a system closed under a multiplication. An element

eEG is called an identity if ae = ea = a for every aEG. An element

OEG is called a null element if Oa=aO = 0 for every aEG. Clearly e

and 0 are unique if they exist; e = 0 if and only if G has just one

element. A square root of the identity is an element q E G such that

q2 = e. Let HEG be the set consisting of the square roots of the

identity in G and the null element if it exists. We assume throughout

that the elements of H commute with each other. If G is a ring with

identity and without divisors of zero and with ring multiplication as

multiplication in G, then H consists of 0, e, —e and these commute

with every element of G, for if q2 = e, (q—e)(q+e) =0 and q= +e.

R will always denote a ring with identity, and SO?« will denote the

set of «X« matrices with elements in R. Let M((c), Eijt Aa(c) (i^j)

be the matrices resulting respectively from the identity matrix / by

multiplying row * by c, interchanging rows i and j, and adding row i

multiplied by c to row j; these will be called elementary matrices.

Let 9K„* denote the set of matrices in 5D?„ which are products of

elementary matrices.

For some rings R, 9JÎ„* = SDî„; if R is such a ring and 0 is a homo-

morphism of R onto a ring R', then aft'«* = 9)?n where the prime refers

to matrices with elements in R'. For 6 induces in a natural way a

homomorphism 6 of 3Jf„ onto STJCn (merely let 0 act on each element of

the matrix) in which the image of an elementary matrix is elemen-

tary. Suppose that a nonnegative integral absolute value \a\ is de-

fined in R subject only to the conditions that for every b^O and a

in R, a = bq+r and a = q'b+r' where \r\, \r'\ <|&|. Then the usual

procedure can be used to reduce a matrix in 9Jc„ to diagonal form by

left and right multiplications by elementary matrices with inverses ;

see [l, vol. 2, p. 120 ff.]. A diagonal matrix is a product of elementary

matrices Mt(c) and the inverse of an elementary matrix is elementary

if it exists, hence if R has an absolute value as above, 5D?„* = 3J?n. A

skew field or field or any euclidean ring admits such an absolute

value. If a ring R has such an absolute value and ß is a homomorphism

of R onto a ring S, then for sES define |s| =min \r\ for ß(r)=s;

this gives S an absolute value with the above properties.

A mapping 4> of ÜW„ or SD?„* into G such that <i>(BC) =3>(-B)$(C)

for every B, CE'SSln or 5D?n* respectively, will be called a multiplica-
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tive matrix homomorphism. A mapping <f> of R into G such that

<f>(uv)=d>(u)d>(v) for every u, vER will be called a multiplicative

homomorphism. The following simple facts will be used ordinarily

without explicit reference.

Lemma 1. (a) // <£ is a multiplicative matrix homomorphism of

9Kn into G, then 4> confined to ÜD?n* is a multiplicative matrix homo-

morphism of 2ftn* onto a multiplicatively closed subset of G.

If <£ is a multiplicative matrix homomorphism of 5D?B or SDî„* onto

G, then : (h) Multiplication in G is associative, (c) G has a null element,

(d) G has an identity.

The proof is obvious; for example the existence of the null and

identity elements in G follows from the existence in SD?«* of the zero

and identity matrices 0 and /.

Lemma 2. Suppose <£ it a multiplicative matrix homomorphism of

9W„* onto G, then : (1) [4>(£,i)]2 = e. (2) 4>(£iy) = $(Erk). (3) [*(Af,( -1)) ]2
= e. (4) [Z(Aij(c))]2 = e. (5) *(¿«(c)) = *(At¿-c)). (6) ^(A{j(c))

= *(Ark(c)). (7) $(£0)=$(M,(-l))d>(^0(l)). (8) J/«>2, *(A<¿c))
= e. (9) If n?i2 or if the elements of H commute with every element of G,

then $(Mi(c)) =$(Mj(c)). (10). If n>2 or if n = 2 and the elements of H
commute with every element of G, then G is commutative.

The following identities gives these results: (1) £,>£,, = /, hence

*(£„)*(£„)=#(/)=«. (2) En=ETiErjEri and Eij = E3i and (1).

(3) Mi(-l)Mi(-l)=I. (4) Mi(-l)Aii(c)Mi(-l)Aii(c)=I, hence
3?(Mi( — l))$(Ai,(c)) is a square root of e and (4) follows from (3).

(5) Aii(-c) = Mi(-l)Aii(c)Mi(-l) and (3) and (4). (6) Ai}(c)
= EjkAik(c)Eik and A<;(c) = EiSA*(c)E«. (7) E„-J^-lMiX!)
iá*(-l)ii4/(l). (8) ^<i(C)=^Jfcy(-lMfi(-cMij(lMrt(c) if i,j, k are
distinct ; then use (4) and (5). (9) M((c) = EijM j(c)Ea; if elements of H

commute with every element of G then (1) gives the result. If » = 1, the

result is obvious. If »>2, using (2), $(Mi(c)) =$(Ei3)$(M3(c))<i>(Eu)

= $(M2(c)). Also $(M2(c))=$(Eij)$(Mi(<;))$(£,.,.); hence $(Mi(c))

= d>(£,.i)a>(Jlf1(c))d>(£,.3.) and ^(Mi(c))=^(Mj(c)). (10) If «^2, (9)

and the hypotheses of (10) give *(M,(c)) =d>(Af3(c)). But Mi(a)M2(b)

= M2(b)Mi(a), hence all elements of G of the form <£(M) commute

with each other. Every element of G is a product of elements of the

form $(M) and elements of H, hence G is commutative if the ele-

ments of H commute with every element of G. If »>2, the last part

of the proof of (9) shows that $(E) commutes with every $(M), also

$(A) =e by (8). Then every element of G is a product of elements of

the forms $(£) and $(M) and these all commute with each other.
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If $> is a multiplicative matrix homomorphism of ffl* onto G and

nj¿2 or the elements of H commute with every element of G, then

$(Mi(c)) =$(M,(c)). Define <b(c) = $(Af,(c)) ; <f> is clearly a multiplica-

tive homomorphism of R into G. <b will be said to be associated with

$. For BEffln the determinant det B is defined and if R is commuta-

tive, det jBC=det B det C for every B and C; if «>1, this identity
implies R is commutative.

Theorem 1. If R is commutative and «^2, every multiplicative

matrix homomorphism 4> of SD?«* omío G is of the form $(B) =<j> (det B)

where <f> is a multiplicative homomorphism of R into G uniquely de-

termined by $>.

Take <p to be the multiplicative homomorphism associated with

$. The result is clear if « = 1; assume »>2. $(Mi(c))=d>(c)

=<t>(det Mi(c)). By Lemma 2 part 8, $(Ai,-(c)) =e=</>(!)

=<p(det Aij(c)) and by Lemma 2 part 7, *(£<>■) =$(Af,-(-l))

=#( — l)=</>(det £,y). Hence $(2?) =</>(det -B) for any elementary

matrix, consequently for any matrix in 9Kn*. If $(£) =^-(det B) for

every 5G9»»*, ^=0 since^(c) =^(det M,(c)) =a>LM,(c)) =<^(c).

Corollary. If F is a commutative multiplicative system or a ring

without divisors of zero, and if R is a field and <i> is a multiplicative

matrix homomorphism of Sf/Ín (n?¿2) into F, then <P=<£(det) where <p

is a multiplicative homomorphism of R into F; $(B) = 4>(0) if det B = 0.

If F=R and *(Mi(c)) m c, $ = det.

For if F is commutative or a ring without divisors of zero, every

multiplicatively closed subsystem of F is a system of type G. Then

Lemma 1 and Theorem 1 give the result.

We shall use G* to denote a system G with the properties: (i) The

elements of H commute with every element of G. (ii) If ab = 0, a = 0

or 6=0. (iii) If qEH and qa = a for some a^O, then q = e. A ring with-

out divisors of zero, under multiplication, and a group with a null

element adjoined are examples of systems G*. In a system G*,

p = q if p, qEH and pa = qa for some a^O.

A multiplicative matrix homomorphism ß of Tl* into G* will be

called simple if ß maps SDÎ * into H, and the associated multiplicative

homomorphism a maps R into the set {0, e] EG*.

Theorem 2. If R is commutative and $ is a multiplicative matrix

homomorphism of SDî2* onto G*, then ^(B) = il(B)(b(det B) where <p

is a multiplicative homomorphism of R into G* and ß is simple and

vanishes simultaneously with d>(det). Such ß and d> are uniquely

determined by 4>.
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Let <p be the multiplicative homomorphism associated with $.

By Lemma 2 parts (1) and (4), $(£) and $(A) are in H and are zero

only if $> = 0, similarly for d>(-l) and 0(1). Also $(M)=<p(det M),

hence for any BE^H?, $(B) =b<p(det B) where bEH and b can be

taken to be zero if and only if <p(det B) =0. Then such b is uniquely

determined according to condition (iii) on G*; let Sl(B)=b. Then

ß(5)ß(C)0(det B)<p(det C)=$(B)$(C)=$(BC) = íl(BC)<j>(det B)
<b(det C). If <KdetB) or ¿>(det C) is zero, íl(B)ü(C) =0 and <¿>(det BC)
= 0 hence ß(2JC)=0. If neither <b(det B) nor d>(det C) is zero, the

product is not zero and ß(5)ß(C) = Ü(BC), hence ß is multiplicative.

ü(M)E[0, e], hence ß is simple. If <$>(B) = Q,'(B)<í>'(det B) where

ß' and <p'(det) vanish simultaneously, replacing B by Mi(c) shows

4>'=<p; clearly then ß' = ß.
If 4> in Theorem 2 is simple, ß = $. Every multiplicatively closed

subset of a ring without divisors of zero is a system of type G*, hence

Theorem 2 holds for multiplicative matrix homomorphisms $> into a

ring without divisors of zero. If ß is simple and \¡/ is an arbitrary

multiplicative homomorphism of J? into G*, then ^(5) = ß(5)^(det5)

is a multiplicative matrix homomorphism.

Let ß be a simple multiplicative matrix homomorphism, let w be

the multiplicative homomorphism associated with ß, and let a(c)

= ti(Ai2(c)) = Q(A2i(c)). Clearly ß is determined by w and a; for

ß(E), see the proof of Lemma 2 part 7.

Lemma 3. Suppose ß is simple and co and <r are as above, then:

(!) w(ab)=w(aMb). (2) <r(a+b)=<r(a)a(b). (3) w(c)=0 or e. (4) If

ß^O and ab = 1ER, then w(a)=u(b)=e. (5) [<j(a)]2 = e if ß^O.

(6) lfo)(a)t¿0, o(ar)=o-(r). (7) Ifo-(r)=e, ß=w(det). (8) w(l + l) = 0

or ß=co(det).

These facts are derived from the following identities. (1)

Mi(a)Mi(b)=Mi(ab). (2) Ai2(a+b)=Ai2(a)Ai2(b). (3) ß is simple.

(4) If ab = l, Mi(a)Mi(b)=Iand Q(I)=e^0 since ß^O. (5) Follows

from Lemma 2 part 4. (6) Mi(a)An(ar) = Ai2(r)Mi(a), then use (5)

and the properties of G*. (7) By Lemma 2 part 7 and by Lemma 3

part 4, to(-l)=e and ß(£,y) = ß(Jlf,(-l))ß(.4iy(l)) =e=w(det E,y).

Also ß(^fy(r))=e=to(det^,y(r)) and ß(M,-(c)) =co(c) =«(det Mi(c)).

Hence il(B)=w(det B) for every BEW?. (8) If <ú(1 + 1)?¿0, e

= <r(r)o-(r)=ff((l-f-l)r)=<r(r) by (6). Then use (7).

Theorem 3. // R is commutative and 1/2ER, then all multiplica-

tive matrix homomorphisms 3» of Wl* onto G* are of the form \j/(det)

where d1 is a multiplicative homomorphism of R into G*.
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For by Theorem 2, $(B) = Sl(B)d> (det B) where ß is simple.

Then by Lemma 3 part 4, ß = 0 or co(2)=e, and by part 8, ß = 0 or

ß=w(det). In either case <P is of the form ^(det).

Theorem 3 holds for multiplicative matrix homomorphisms $> into

a ring without divisors of zero; this is easily seen from a remark fol-

lowing the proof of theorem 2.

Let

P,-0'      r"Q-      P,-Q'

N'-Q-  N-0-  '-Q
be matrices with elements in R = $2, the field of integers modulo two.

Define ß0(P<) =eEG*, ®o(Ni)=qEHEG* (q^O, i=l, 2, 3) and
ßo(5) =0 for other 2X2 matrices with elements in !$2. Computation

of the multiplication table for the group of matrices Pt and Ni shows

ßo to be a multiplicative matrix homomorphism.

Theorem 4. // 2JÎ2 is the set of 2X2 matrices over afield R, all
multiplicative matrix homomorphisms $ of 3JÎ2 onto G*, except the

homomorphism ß0 above, are of the form V'(det) where d1 is a multi-

plicative homomorphism of R into G*. In particular, if R has more than

two elements, $> is of the form \[/(det).

By Theorem 2, <P = ß<£(det) where ß is simple. If either ß or 3>

is identically 0 or identically e, the result is obvious. Suppose i? is a

field and neither 4> nor ß is identically 0 or identically e. If a^O,

o-(a)=<r(l) by Lemma 3 parts 4 and 6; hence if there is an r£2?

distinct from 0 and -1, o-(l)=<r(r+l) =<r(r)<r(l). But o(l)¿¿0 by

Lemma 3 part 5, hence a(r)=e by condition (iii) on G*, and <r(a)

= a(l)=a(r)=e. By Lemma 3 part 7, ß = co(det), and <ï>

= w(det) <£(det). If \f/(a)=u(a)d>(a), <t>=^(det); clearly \p is a multi-

plicative homomorphism since u(a)EH and elements of H com-

mute with every element of G*.

If R has no element distinct from 0 and — 1, R = $2. Then Lemma 2

shows that $(N2) =<P(Ars) is in H and is not zero since N2 = Ai2(l)

and iV3=^421(l). Also, since -1 = +1 and Nx = Ei2, $(Ni)=$(N2)

= $(Nz) using Lemma 2 part 7. It is also easy to see that <P(P<) =e.

By Theorem 2, $(B) =0 if det 5 = 0; hence 4>(P.) =e, $(Ni)=qEH

(q^O, i=l, 2, 3) and #(5) =0 for other BE M2. Thus $ is of the type

ß0. If q^e, <E> is not of the form ^(det) since det P, = det Nj=l.

Let 3 be the ring of integers and 0:3—»32 be reduction modulo two
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and let © be the induced homomorphism of integral 2X2 matrices

onto 2X2 matrices with elements in 3».

Theorem 5. All multiplicative matrix homomorphisms <5 of the set

of 2X2 matrices with integral elements onto a system G* are of the form

*(5)=^(det B) or $(B) = Qo(®(B))\¡/(det B) where ß0 is given in

Theorem 4 and \p is a multiplicative homomorphism of 3 into G*.

Suppose ß is a simple homomorphism of integral 2X2 matrices

and is not of the form $(det). Then a(2n) =<r(n)a(n) = e and <r(2« + l)

= a(l)=qEH, q¿¿0. Using this q, define ß0 as in Theorem 4, then

ß(4iy(»i)) = Qo(Aij(0m)) = Qo(®Ai,(m)). Also w(2«) =to(2)co(») =0 by

Lemma 3 part 8, and fl(Af¿(c)) = ß0(@Af,(c))w(c) since ßo(@M<(c))

vanishes only if ß(Af<(c)) vanishes and otherwise is e. Thus for

matrices of type M and A (hence for arbitrary matrices), ß(B)

= ßo(@B)w(det B). Then using Theorem 2, $=\[/(det) or $> is of the

form ß0(©)^(det) for some multiplicative homomorphism^ of 3 into

G* and ß0 of the type mentioned in Theorem 4.

If G* is the set of integers under multiplication, H= {0, 1, — 1}.

The only homomorphisms of type ßo are (taking q = l) ßo' (P.)

= ß0' (Ni) = l, ß0' (B) =0 if B^Ni, P,-,and ß0"(P,) = l, ß0"(iV,) = -1,

ßo" (B) =0 if B^Ni, Pi. ß0' is of the form ^(det).

Corollary. Every multiplicative matrix homomorphism of integral

2X2 matrices into 3 « of the form ^(det) or ßo"(@)^(det) for some

multiplicative homomorphism \p of 3 into 3-
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