The rotation theorem for starlike univalent functions
HTML articles powered by AMS MathViewer
- by A. W. Goodman
- Proc. Amer. Math. Soc. 4 (1953), 278-286
- DOI: https://doi.org/10.1090/S0002-9939-1953-0053221-5
- PDF | Request permission
References
- J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. MR 1503516, DOI 10.2307/2007212
- Ludwig Bieberbach, Aufstellung und Beweis des Drehungssatzes für schlichte konforme Abbildungen, Math. Z. 4 (1919), no. 3-4, 295–305 (German). MR 1544366, DOI 10.1007/BF01203017 Z. W. Birnbaum, Beiträge zur Theorie der schlichten Funktionen, Studia Math. vol. 1 (1929) pp. 159-190.
- Charles Darwin, Some conformal transformations involving elliptic functions, Philos. Mag. (7) 41 (1950), 1–11. MR 32753
- A. W. Goodman, On the Schwarz-Christoffel transformation and $p$-valent functions, Trans. Amer. Math. Soc. 68 (1950), 204–223. MR 33886, DOI 10.1090/S0002-9947-1950-0033886-6
- A. W. Goodman, Inaccessible boundary points, Proc. Amer. Math. Soc. 3 (1952), 742–750. MR 50680, DOI 10.1090/S0002-9939-1952-0050680-8
- Malcolm I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408. MR 1503286, DOI 10.2307/1968451 W. G. Stroganoff, Über den arc $f’(z)$ unter der Bedingung dass $f(z)$ die konforme Abbildung eines sternartigen Gebietes auf das innere des Einheitskreises der z-Ebene liefert, Trudy Mat. Inst. Steklova. vol. 5 (1934) pp. 247-258.
- B. M. Urazbaev, On the argument of the derivative of a univalent star-shaped function, Izv. Akad. Nauk Kazah. SSR Ser. Mat. Meh. 56(2) (1948), 102–121 (Russian, with Kazakh summary). MR 0045212
Bibliographic Information
- © Copyright 1953 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 4 (1953), 278-286
- MSC: Primary 30.0X
- DOI: https://doi.org/10.1090/S0002-9939-1953-0053221-5
- MathSciNet review: 0053221