MONOTONIC SUBSEQUENCES

JOSEPH B. KRUSKAL, JR.

1. Introduction. Hidden in a paper by Erdös and Szekeres is an intriguing result.

Basic Theorem. Every sequence \(S = \{x_i\} \) (\(i = 1 \) to \(n^2+1 \)) of real numbers having \((n^2+1) \) terms possesses a (perhaps not strictly) monotonic subsequence \(M = \{x_j\} \) (\(j = 1 \) to \(n+1 \)) having \((n+1) \) terms. Furthermore \((n^2+1) \) is the smallest number for which this is true.

Briefly, this theorem states that a monotone subsequence of any desired length can be picked out from a sufficiently long sequence, and gives the precise lengths. An elegant proof of this theorem (unpublished) which is due to Martin D. Kruskal is sketched here.

Notation. Let \(S \) and \(T \) denote sequences, and let \(M \) and \(N \) denote monotone sequences. Let \(S(p) \), etc., denote a sequence having \(p \) terms. Let \(\psi(n) \) denote the least integer \(p \) such that every \(S(p) \) contains an \(M(n) \). In this notation we may restate the basic theorem thus:

Basic Theorem. For sequences of real numbers, \(\psi(n+1) = n^2+1 \).

To show that \(\psi(n+1) \geq n^2+1 \), it is sufficient to exhibit an \(S(n^2) \) which contains no \(M(n+1) \). Such a sequence is the following:

\[n, \ldots, 1, 2n, \ldots, n+1, \ldots, n^2, \ldots, n^2 - n + 1. \]

To show that \(\psi(n+1) \leq n^2+1 \), assume the contrary and let \(n \) be the least integer such that \(\psi(n+1) > n^2+1 \). Let \(S(n^2+1) \) be a sequence which does not contain any \(M(n+1) \). Now define a majorant (minorant) of \(S \) to be a term which is strictly greater (smaller) than all terms following it in \(S \). The majorants (minorants) form a decreasing (increasing) subsequence of \(S \); hence there are at most \(n \) majorants and \(n \) minorants. As the final term of \(S \) is necessarily both a majorant and a minorant, there are at most \(2n-1 \) extremants (majorants and minorants). The last term of every \(M(n) \) contained in \(S \) must be an extremant. Now delete from \(S \) all its extremants. The remainder \(S' \) can contain no \(M(n) \), yet has at least \([(n^2+1)-(2n-1)] = [(n-1)^2+1] \) terms. Hence \(\psi(n) = \psi(n-1+1) > (n-1)^2+1 \). This contradicts the definition of \(n \) and completes the proof.

Received by the editors April 7, 1952.

2. First generalization—real vector spaces. In the following two sections the concept of a monotonic sequence is generalized to sequences of vectors from a finite-dimensional real vector space and a partial analogue of the Basic Theorem is obtained. (If \(S = \{ x_i \} \) is a sequence from a vector space, the subscript still distinguishes terms of the sequence, not components of a vector.)

Note that a sequence \(S = \{ x_i \} \) of real numbers is monotonic if and only if all the differences \((x_{i+1} - x_i)\) lie (perhaps not strictly) to the same side of 0 on the real line. This motivates:

Definition. A sequence \(S = \{ x_i \} \) of terms from a finite-dimensional real vector space is monotonic if there is a hyperplane \(H \) through the origin such that the differences \(d_i = x_{i+1} - x_i \) all lie in one of the closed half-spaces determined by \(H \).

This definition is further justified by:

Lemma 1. A sequence \(S \) of vectors is monotonic if and only if there is a directed line \(L \) such that the perpendicular projections of the \(x_i \) on \(L \) form an increasing sequence.

This lemma is easily proved by taking \(L \) and \(H \) to be perpendicular. The direction of any such line \(L \) is called a direction of monotonicity of \(S \). In 1-space there are only two possible directions of monotonicity: increasing and decreasing. In \(r \)-space the possible directions of monotonicity correspond to the points on the \((r-1)\)-sphere.

Any sequence of two real numbers is monotonic. This generalizes to:

Lemma 2. In \(r \)-space any sequence of \((r+1)\) terms is monotonic.

This can easily be proved geometrically.

Notation. For convenience, let the function \(\psi(n) \) which applies in \(r \)-space be indicated by \(\psi_r(n) \).

Lemma 3. (a) If \(S(n^2+1) = \{ x_i \} \) is any sequence of \((n^2+1)\) terms in \(r \)-space and \(L \) is any directed line in \(r \)-space, then \(S \) contains either a subsequence monotonic in the direction of \(L \) or a subsequence monotonic in the direction opposite to \(L \). (b) \(\psi_r(n+1) \leq n^2+1 \).

Proof. (a) follows easily from Lemma 1 and the Basic Theorem; (b) follows from (a). But (a) is much stronger than (b) because (a) says "for any \(L \cdots \)" while (b) says implicitly "there exists an \(L \) such that. . . ." This suggests that actually \(\psi_r(n+1) \) is smaller than \((n^2+1)\) in general.

What is the full generalization of the Basic Theorem to \(r \)-space? In other words, what is the function \(\psi_r(n) \)?
Conjecture. \(\psi(n+r) = r n + (n^2 - n + 1) \).
This conjecture is based solely on the following collection of facts.

Basic Theorem. \(\psi_1(n+1) = n + (n^2 - n + 1) \).

Lemma 2 (New Form). \(\psi_r(1+r) = r + (1-1+1) \).

Theorem 1. \(\psi_r(2+r) \leq 2r + 3 = 2r + (4-2+1) \).

Lemma 4. For \(r = 1 \) and 2, the \(\leq \) of Theorem 1 becomes =.

The proof of Theorem 1 is long and occupies the next section. For \(r = 1 \), Lemma 4 is trivial. To prove Lemma 4 for \(r = 2 \), it is sufficient to exhibit a sequence of 6 vectors from 2-space which contains no monotone subsequence of 4 terms. That the following is such a sequence may be verified directly:

\((2, -1), (3, 6), (-3, 12), (-3, -12), (3, -6), (2, 1)\).

3. **Proof of Theorem 1.** The basic tool in proving Theorem 1 is

Lemma 5. If \(S(p) = \{ x_i \} \) is a sequence in \(r \)-space, then at least one of the following conditions is true:
(a) \(S \) is monotone;
(b) there exist real numbers \(\alpha_i > 0 \) (\(i = 1, \ldots, p-1 \)) such that \(\sum \alpha_i d_i = 0 \), where \(d_i = x_{i+1} - x_i \).

Proof. It is sufficient to show that the falsity of (b) implies (a). Thus assume that 0 does not belong to the convex cone \(C = \{ \sum \alpha_i d_i \mid \text{all } \alpha_i > 0 \} \). Then a well known theorem about convex sets yields that there is a hyperplane \(H \) through 0 such that \(\overline{C} \) (the topological closure of \(C \)) lies entirely in one of the closed half-spaces determined by \(H \). Since \(d_i \) is in \(\overline{C} \) for all \(i \), \(S(p) \) is monotone, and the proof is complete.

Comment. It is possible to modify (b) into a necessary and sufficient condition for non-monotonicity. This condition might be useful in further investigation of the function \(\psi_r(n) \).

Lemma 6 follows from Lemma 5.

Lemma 6. Let

\(S(p) = \{ x_i \} \)

be any sequence in \(r \)-space, and let

\(S'(q) = \{ x_i \} \)

be a non-monotone subsequence of it (of course \(1 \leq s_1 < s_2 < \cdots < s_q \leq p \)). Then there exists a \((p-1)\)-tuple of real numbers \(g = \{ g_i \} \) such
that $\sum \gamma_i d_s = 0$ where g satisfies the following “suitability conditions with respect to (s_1, \ldots, s_q)”:

$$\begin{align*}
\begin{cases}
\gamma_1 = \cdots = \gamma_{s_1-1} = 0, \\
\gamma_{s_1} = \cdots = \gamma_{s_2-1} > 0, \\
\cdots \\
\gamma_{s_{q-1}} = \cdots = \gamma_{s_q-1} > 0, \\
\gamma_{s_q} = \cdots = \gamma_{p-1} = 0.
\end{cases}
\end{align*}$$

Proof. By Lemma 5 there exist strictly positive α_i ($i = 1, \ldots, q-1$) such that

$$\sum_{i=1}^{q-1} \alpha_i [x_{s_{i+1}} - x_i] = 0.$$

Hence

$$\sum_{i=1}^{q-1} \alpha_i \left[\sum_{s_i}^{s_{i+1}-1} d_j \right] = 0.$$

Now define $g = \{\gamma_s\}$ as follows:

$$\begin{align*}
\begin{cases}
\gamma_1 = \cdots = \gamma_{s_1-1} = 0, \\
\gamma_{s_1} = \cdots = \gamma_{s_2-1} = \alpha_1 > 0, \\
\cdots \\
\gamma_{s_{q-1}} = \cdots = \gamma_{s_q-1} = \alpha_{q-1} > 0, \\
\gamma_{s_q} = \cdots = \gamma_{p-1} = 0.
\end{cases}
\end{align*}$$

Clearly $\sum \gamma_i d_s = 0$, and the proof is complete.

The structure of the $(p-1)$-tuple $g = (\gamma_1, \cdots, \gamma_{p-1})$ can be represented by a q-block diagram. This is obtained by substituting in g an “X” for each nonzero γ, and “0” for each zero γ, and an “$=$” for each comma between two γ’s of one “block” of equal nonzero γ’s. A g which is suitable with respect to $(3, 5, 6, 9)$ and which has 10 components is represented by the following 10-dimensional 4-block diagram: $(o, o, X=X, X, X=X=X, o, o)$. Block diagrams will be used extensively in the following arguments.

At this point it becomes necessary to consider the vectors of the fundamental r-space as r-tuples of real numbers. We shall write these r-tuples vertically and call them column vectors. We adopt the specific notation $d_s =$ the column vector (δ^s_t) as $t = 1, \cdots, r$, where d_s has its usual significance. The sequence $\{d_s\}$, with $s = 1$ to
$p - 1$, now becomes a matrix $D = \|\delta_i\|$ in which $t = 1$ to r is the row index and $s = 1$ to $p - 1$ is the column index. We shall let $d^t \ (t = 1, \ldots, r)$ represent the rows of D.

We now put Lemma 6 into the proper form for actual use:

Lemma 7. If $S(p) = \{x_i\}$ is a sequence in r-space, which does not contain any $M(q)$, then for each $(p - 1)$-dimensional q-block diagram there exists a $(p - 1)$-dimensional row vector g such that g is perpendicular to all the $d^t \ (t = 1, \ldots, r)$ and such that g has the structure of the given q-block diagram.

Proof. The q-block diagram corresponds to a subsequence $S'(q) = \{x_i\}$ of S. Apply Lemma 6 to $S'(q)$ and rewrite the equation $\sum \gamma_i d_i = 0$ as r equations $\sum \gamma_i d_i = 0$. These may be written $g \cdot d^t = 0$ or "g is perpendicular to d^t." This completes the proof.

The last tool needed to prove Theorem 1 is

Lemma 8. If $S(p) = \{x_i\}$ is not monotonic, the vectors $d^t \ (t = 1 \to r)$ are linearly independent.

Proof. As S is not monotonic, the d_i do not all lie on a common hyperplane through the origin, hence span the whole $(r$-dimensional$)$ space of column vectors. Thus D has column-rank r, hence row-rank r, which completes the proof.

Theorem 1 is proved indirectly. Assume contrary to the theorem that $S(2r + 3) = \{x_i\}$ contains no $M(r + 2)$.

By Lemma 8, the $r \ (2r + 2)$-dimensional row vectors d^t are linearly independent. Now apply Lemma 7 to the following $(r + 2)$ different $(2r + 2)$-dimensional $(r + 2)$-block diagrams, and label the resulting g’s as shown:

<table>
<thead>
<tr>
<th></th>
<th>1 2 ··· $r + 1$ $r + 2$ $r + 3$ ··· $2r + 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(1)$</td>
<td>$(X, X, \ldots, X, \ o, \ o, \ \ldots, \ o)$</td>
</tr>
<tr>
<td>$g(2)$</td>
<td>$(o, X, \ldots, X, X, \ o, \ \ldots, \ o)$</td>
</tr>
<tr>
<td></td>
<td>··· ··· ··· ··· ··· ··· ··· ··· ···</td>
</tr>
<tr>
<td>$g(r + 2)$</td>
<td>$(o, o, \ \ldots, \ o, X, X, \ \ldots, X)$</td>
</tr>
</tbody>
</table>

These g’s are called the fundamental g’s. Obviously the $(r + 2)$ fundamental g’s are linearly independent. By Lemma 7 every fundamental g is perpendicular to every d^t. Therefore $\{g(1), \ldots, g(r + 2), d^1, \ldots, d^r\}$ is a basis for the $(2r + 2)$-space of row vectors. From this follows

Lemma 9. Every g arising from application of Lemma 7 is a linear
combination of the fundamental g's.

At this point the proof of Theorem 1 splits into two cases, depending on whether \(r \) is odd or even; the former case is simpler and will be considered first.

Assume \(r \) is odd. Apply Lemma 7 to the following \((r+1)\) different \((2r+2)\)-dimensional \((r+2)\)-block diagrams and label the resulting g's as shown:

\[
\begin{array}{cccccccccccccccc}
1 & 2 & \cdots & r & r+1 & r+2 & r+3 & r+4 & \cdots & 2r+2 \\
\bar{g}(1) & (X, X, \cdots, X, X = X, o, o, \cdots, o) \\
\bar{g}(2) & (o, X, \cdots, X, X = X, X, o, \cdots, o) \\
& \cdots \\
\bar{g}(r+1) & (o, o, \cdots, o, X = X, X, X, \cdots, X).
\end{array}
\]

With the aid of Lemma 9 it is easy to see that

\[
\bar{g}(k) = \zeta(k)g(k) + \eta(k)g(k + 1)
\]

for properly chosen \(\zeta(k) > 0 \) and \(\eta(k) > 0 \). Introducing an obvious notation for the components of the g's and the \(\bar{g} \)'s, we have

\[
\gamma_{r+1}(k) = \zeta(k)\gamma_{r+1}(k) + \eta(k)\gamma_{r+1}(k + 1) = \gamma_{r+2}(k) = \zeta(k)\gamma_{r+2}(k) + \eta(k)\gamma_{r+2}(k + 1),
\]

which yields that

\[
[\gamma_{r+1}(k) - \gamma_{r+2}(k)] = -\epsilon(k)[\gamma_{r+1}(k + 1) - \gamma_{r+2}(k + 1)]
\]

where \(\epsilon(k) \) is a positive constant. Now

\[
\gamma_{r+1}(1) - \gamma_{r+2}(1) > 0
\]

because the first term is positive and the second term is 0. The preceding equation now yields successively

\[
\gamma_{r+1}(2) - \gamma_{r+2}(2) < 0, \quad \gamma_{r+1}(3) - \gamma_{r+2}(3) > 0,
\]

and so forth. Since \(r \) is odd, we obtain

\[
\gamma_{r+1}(r + 2) - \gamma_{r+2}(r + 2) = -\gamma_{r+2}(r + 2) > 0
\]

which is false. This completes the proof of Theorem 1 for odd values of \(r \).

Now assume that \(r \) is even. The following notation is introduced for convenience:

\[
\beta(k) \equiv \gamma_{r+1}(k) - \gamma_{r+2}(k), \quad \beta'(k) \equiv \gamma_{r+1}(k) - \gamma_{r+2}(k).
\]
Using the same method as in the preceding paragraph, the following inequalities are established (but without contradiction here):

\[
\beta(k) > 0 \quad \text{if } k \text{ is odd;}
\]

\[
\beta(k) < 0 \quad \text{if } k \text{ is even.}
\]

Now apply Lemma 7 to the following block diagrams and label the resulting g's as shown:

\[
\begin{array}{cccccccc}
g(1) & 1 & 2 & \cdots & r & r+1 & r+2 & r+3 & r+4 & r+5 & \cdots & 2r+2 \\
\end{array}
\]

\[
X, \ X, \ \cdots, \ X, \ \ X=\ X=\ X, \ \ o, \ \ o, \ \ \cdots, \ o
\]

\[
\begin{array}{cccccccc}
g(2) & 1 & 2 & \cdots & r & r+1 & r+2 & r+3 & r+4 & r+5 & \cdots & 2r+2 \\
\end{array}
\]

\[
X, \ X, \ \cdots, \ X, \ \ X=\ X=\ X, \ \ o, \ \ o, \ \ \cdots, \ o
\]

\[
\begin{array}{cccccccc}
g(r) & 1 & 2 & \cdots & r & r+1 & r+2 & r+3 & r+4 & r+5 & \cdots & 2r+2 \\
\end{array}
\]

\[
X=\ X=\ X, \ \ X, \ \ X, \ \ \cdots, \ X
\]

With the aid of Lemma 9 and the established inequalities for \(\beta(k)\), it is not difficult to show that

\[
g(k) = \xi(k)g(k) + \eta(k)g(k+1) + \theta(k)g(k+2)
\]

where \(\xi(k)\), \(\eta(k)\), and \(\theta(k)\) are positive constants. Translating these vector equations into component equations, and using the equalities among the components of the g's, we have

\[
\gamma_{r+1}(k) = \xi(k)\gamma_{r+1}(k) + \eta(k)\gamma_{r+1}(k+1) + \theta(k)\gamma_{r+1}(k+2)
\]

\[
= \gamma_{r+2}(k) = \xi(k)\gamma_{r+2}(k) + \eta(k)\gamma_{r+2}(k+1) + \theta(k)\gamma_{r+2}(k+2)
\]

\[
= \gamma_{r+3}(k) = \xi(k)\gamma_{r+3}(k) + \eta(k)\gamma_{r+3}(k+1) + \theta(k)\gamma_{r+3}(k+2).
\]

Subtract the second equation from the first, and then the third from the first:

\[
0 = \xi(k)\beta(k) + \eta(k)\beta(k+1) + \theta(k)\beta(k+2),
\]

\[
0 = \xi(k)\beta'(k) + \eta(k)\beta'(k+1) + \theta(k)\beta'(k+2).
\]

From these equations it follows that

\[
\xi(k) = \epsilon(k) \begin{pmatrix} \beta(k+1) & \beta(k+2) \\ \beta'(k+1) & \beta'(k+2) \end{pmatrix},
\]

\[
\eta(k) = \epsilon(k) \begin{pmatrix} \beta(k+2) & \beta(k) \\ \beta'(k+2) & \beta'(k) \end{pmatrix},
\]

\[
\theta(k) = \epsilon(k) \begin{pmatrix} \beta(k) & \beta(k+1) \\ \beta'(k) & \beta'(k+1) \end{pmatrix},
\]

where \(\epsilon(k)\) is a properly chosen constant of proportionality.
Call the three determinants $Z(k)$, $H(k)$, and $\Theta(k)$ respectively. Since $\xi(k)$, $\eta(k)$, and $\theta(k)$ are all positive, $Z(k)$, $H(k)$, and $\Theta(k)$ must all have the same sign as $\varepsilon(k)$. Furthermore, as $Z(k) = \Theta(k+1)$, all the determinants have the same sign for all k (from 1 to r). To evaluate the sign of $\Theta(1)$ we use the already established inequalities for the β's and find the sign of the β's from direct examination of the block diagrams of the g's. We see that

$$\Theta(1) = \begin{vmatrix} + & - \\ + & + \end{vmatrix} > 0,$$

so that all the determinants are positive.

Similarly, we find that

$$Z(1) = \begin{vmatrix} - & + \\ + & ? \end{vmatrix}.$$

For this to be positive, "?" must be "+", so that $\beta'(3) < 0$. Using this result we see that

$$Z(2) = \begin{vmatrix} + & - \\ - & ? \end{vmatrix}.$$

For this to be positive, "?" must be "+", so that $\beta'(4) > 0$. Similarly, $\beta'(5) < 0$, $\beta'(6) > 0$, and so forth. Since r is even, $\beta'(r+2) > 0$; however, direct examination of the block diagram shows that $\beta'(r+2) < 0$. This contradiction completes the proof of Theorem 1 for even values of r, and hence the whole proof.

4. Second generalization—relation spaces. In the following sections we again generalize the Basic Theorem, but in a manner quite different from that of the preceding sections.

The Basic Theorem is not in essence a statement about the real number system. To see this, consider any set X with an arbitrary binary relation \subset over it. (No assumptions are made about \subset; for example, it need not be transitive.) Let us say that $S = \{x_i\}$ is \subset-monotonic (\subset-monotonic) if $x_i \subset x_{i+1}$ ($x_i \subset_{\subset} x_{i+1}$) for all i. Call S monotonic if it is either \subset-monotonic or \subset-monotonic. Then for sequences over X it is still true that $\psi(n+1) \leq n^2+1$, and for a "general" space X it is true that $\psi(n+1) = n^2+1$. The inequality may be proved exactly as before.

What is the meaning of the "2" in (n^2+1)? The answer is simple: it is the number of relations (\subset and \subset) of which at least one must hold between any two elements. The "2" is generalized to a "k" in Theorem 2.
Definition. A \(k \)-relation space (\(kR \)-space for short) consists of a set \(X \) and \(k \) binary relations \(C_h \) over \(X \) (\(h = 1, \ldots, k \)) satisfying one axiom: for every \(x, y \) in \(X \), there is at least one \(h \) depending on \(x \) and \(y \) such that \(x \in C_h y \).

Definition. A sequence \(S = \{ x_i \} \) is \(\subseteq_k \)-monotonic if \(x_i \subseteq_k x_{i+1} \) for all \(i \).

Definition. A sequence \(S \) is monotonic if there is at least one \(h \) for which it is \(\subseteq_k \)-monotonic.

Extended Basic Theorem. For sequences over a \(2 \)-relation space, \(\psi(n+1) \leq n^2 + 1 \). Furthermore, there are \(2 \)-relation spaces for which \(\psi(n+1) = n^2 + 1 \).

Theorem 2. For sequences over a \(kR \)-space, \(\psi(n+1) \leq n^k + 1 \). Furthermore, there are \(kR \)-spaces for which \(\psi(n+1) = n^k + 1 \).

In the \(kR \)-space to be described \(\psi(n+1) = n^k + 1 \). Let \(X \) consist of all real polynomials in the variable \(\xi \) of degree \(\leq k - 1 \). The relations \(C_h \) are defined by

\[
p(\xi) \subseteq_k q(\xi) \quad \text{if} \quad [p(\xi) - q(\xi)] \text{ has exactly degree } (k - h).
\]

(The zero polynomial is assigned degree 0.) It is trivial to show that this is a \(kR \)-space, and the following \(S(n^k) \) contains no \(M(n+1) \):

\[
\begin{align*}
\xi + 1, \\
\xi^2 + \xi + 1, \\
\xi^3 + \xi^2 + \xi + 1, \\
\cdots, \\
\xi^{k-1} + \xi^{k-2} + \cdots + \xi + n, \\
\xi^{k-1} + \xi^{k-2} + \cdots + 2\xi + 1, \\
\cdots, \\
\xi^{k-1} + \xi^{k-2} + \cdots + 2\xi + n, \\
\cdots, \\
n\xi^{k-1} + n\xi^{k-2} + \cdots + n\xi + n.
\end{align*}
\]

The proof\(^\star\) that \(\psi(n+1) \leq n^k + 1 \) in a \(k \)-relation space rests on Lemma 10 which (for real numbers) is stated in the paper by Erdős and Szekeres.

\(^\star\) For the basic idea of this proof I am indebted to the referee, who suggested a proof far simpler than the one originally contained in my paper. However, by using Lemma 10, not originally in my paper and not known to the referee, I have further simplified his proof.
Lemma 10. If \((X, \subseteq_1, \subseteq_2)\) is a 2-relation space, then any sequence \(S(p+1)\) either contains a \(\subseteq_1\)-monotonic subsequence \(M(p+1)\) or a \(\subseteq_2\)-monotonic subsequence \(M(q+1)\).

This lemma may easily be proved in the same way as the Extended Basic Theorem.

Now we proceed by an induction on \(A\). If \((X, \subseteq_1, \ldots, \subseteq_{t+1})\) is a \((k+1)\)-relation space, and \(S(n^{k+1}+1)\) is a sequence over it, define \(\ll_1\) and \(\ll_2\) by

\[
\begin{align*}
x \ll_1 y, & \quad \text{if } x \subseteq_h y \text{ for any } h \text{ from 1 to } k, \\
x \ll_2 y, & \quad \text{if } x \subseteq_{k+1} y.
\end{align*}
\]

Now \((X, \ll_1, \ll_2)\) is a 2-relation space. Hence by Lemma 10, \(S\) contains either \(M_1(n^k+1)\) which is \(\ll_1\)-monotonic or \(M_2(n+1)\) which is \(\ll_2\)-monotonic. In the latter case the proof is complete as \(M_2(n+1)\) is also \(\subseteq_{k+1}\)-monotonic. In the former case, let \(M_1\) denote the set of elements in \(\subseteq_1(\subseteq^{k+1})\) and define \(\subseteq_h\) over \(M_1\) by

\[
x \subseteq_h y \quad \text{if } x \subseteq_h y \text{ or if } y \text{ precedes } x \text{ in } \subseteq_1(n^{k+1}).
\]

Then \((M_1, \subseteq_1, \ldots, \subseteq^k)\) is a \(kR\)-space. Hence by the induction hypothesis \(M_1(n^k+1)\) must contain an \(M(n+1)\) which is \(\subseteq_h\)-monotonic for some \(h\) from 1 to \(k\). But then \(M(n+1)\) is \(\subseteq_h\)-monotonic, which completes the proof.

5. De Bruijn's Theorem—a generalization. In some unpublished work N. G. de Bruijn has generalized the Basic Theorem to sequences of \(m\)-tuples of real numbers. He defines such a sequence to be monotonic if each component sequence is monotonic. (Thus there are \(2^m\) "directions" of monotonicity.)

De Bruijn's Theorem. Over the space of \(m\)-tuples, \(\psi(n+1) = n^{2^m}+1\).

His proof is simply an \(m\)-fold application of the Basic Theorem. From \(S(n^{2^m}+1)\) pick a subsequence \(S_1(n^{2^m-1}+1)\) whose first components are monotonic. From \(S_1\) pick a subsequence \(S_2(n^{2^m-2}+1)\) whose second components are monotonic; and so forth. This eventually yields \(S_m(n+1)\) which is monotonic. This shows that \(\psi(n+1) \leq n^{2^m}+1\); the opposite inequality is easily verified.

De Bruijn's Theorem inspires Theorem 3, which is at once a generalization of De Bruijn's Theorem and of Theorem 2.

Definition. A joint relation-space with coefficients \(k_1, \ldots, k_m\) consists of \(m\) different relation-spaces over the same set \(X\) such that the \(i\)th space is a \(k_iR\)-space.
The relations are denoted by \subset^{l}_k, where $k = 1, \ldots, k_1$ and $l = 1, \ldots, m$.

Definition. A sequence is monotonic over a joint relation-space if it is simultaneously monotonic over every one of the k_1R-spaces.

Theorem 3. Over a joint relation-space, $\psi(n + 1) \leq n^{k_1 \cdots k_m} + 1$.

De Bruijn's Theorem is a special case of Theorem 3 in which all the coefficients are 2 and the set X consists of the real m-tuples. However his proof cannot be extended to prove Theorem 3, for his proof depends on the transitivity of his relations which is not assumed in Theorem 3.

However Theorem 3 may be proved as a trivial corollary to Theorem 2. Simply define $k_1k_2 \cdots k_m$ new relations over X by

$$x \ll_{k_1, \ldots, k_m} y \text{ only if } x \subset^{l}_k y \text{ for all } l.$$

Then X and the new relations form a $k_1k_2 \cdots k_mR$-space. Use of Theorem 2 then completes the proof.

Princeton University